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Abstract

In the software industry any professional team uses version control systems to keep track
of their source code. Those systems are all based upon algorithms capable of detecting
changes between different versions of a file. This process is commonly referred to as
diffing. At least as important as detecting changes is the complementary operation
namely patching or merging, i.e. applying those changes to the original document or a
slightly changed version thereof. However common version control systems are optimized
for plain text files and therefore do not work very well for structured documents. We
suppose that this is one of the reasons why generic version control systems are not very
useful for people who mainly work with content.

Many software packages already are capable of recording changes to single documents.
However sometimes it is desirable that the history of a document or even a set of multiple
documents of different types can be tracked without having to rely on the editor software.
Because more and more vendors are switching to standardized document formats, it is
now feasible to apply a generic approach on versioning structured documents.

In this work we present implementations of a diff and a patch algorithm suitable for
structured documents. We also compare them to related approaches and outline the
research which has led to their development.

We hope that this work will serve as a starting point of subsequent projects in the
domain of version control and document management.
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1. Introduction

1. Introduction

1.1. Motivation and Goals

1.1.1. A Need for Robust and Effective Version Control

When different authors are working on the same document, the ability to track and
manage changes is essential. Standard desktop software, e.g., word processors, often
provide mechanisms for revision control out of the box. Also many web based collabora-
tive editors like wikis and content management systems provide means to review history
and rollback to previous versions of a document. In order to prevent conflicting changes,
authors either have to manually coordinate editing sessions among them or a locking
system needs to control access to the document. But both solutions typically block ac-
cess to the entire file during an editing session, preventing effective collaborative work
in many cases.

In order to mitigate the locking problem, vendors of office software are now introducing
online real-time collaboration features. In some text editors and word processors, authors
may share an editing session with other users on the same network and even accross the
internet1. Also browser based office suites are appearing nowadays which allow real-time
collaboration on structured documents hosted on a server in the internet.

However all those version control and collaboration methods are tied to the host
application. As a consequence the involved editors are forced to use the same software.
While this situation might be acceptable for small teams working in a managed office
environment, such a restriction might result in major problems when a workflow requires
integration of third party systems.

Also due to the rise of new classes of mobile devices like smartphones and tablets, it
will likely become difficult to maintain a uniform software landscape even throughout
a single organization. Additionally real-time collaborative editors require a permanent
and reliable connection to other participants in an editing session. Obviously this is a
problem for mobile users.

Distributed teams in the software industry heavily rely on version control systems
which are capable of tracking and merging changes to source code. Often individual
developers use different editors and work with a more or less customized set of tools
which best fits their working style. In such an environment it is very important that the
version control system may be used independently of a document editor.

Source code management systems detect modifications by comparing two versions of a
file. Inserted and deleted text is recorded in a so called changeset along with additional

1The first implementation of a collaborative real-time editor was presented at legendary “The
Mother of All Demos” by Douglas Engelbart in 1968 (refer to Stanfords Mouse Site for more in-
formation http://sloan.stanford.edu/MouseSite/1968Demo.html). Recent implementations in-
clude SubEthaEdit (Mac OS X http://www.codingmonkeys.de/subethaedit/index.html) and ACE
(Mac/Windows/Linux http://sourceforge.net/projects/ace/, the software was developed as part
of the Bachelor Thesis of M. Bigler, S. Räss and L. Zbinden at the Bern University of Applied Scinces,
Department of Computer Science). Also current versions of Abi Word (http://www.abisource.com/)
and Microsoft Office (http://office.microsoft.com/) provide this feature.

1
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1. Introduction

data like edit location and surrounding context lines, revision date and author informa-
tion. A changeset can be shared with team members, can be posted on a mailinglist
for public review or simply kept for later reference. Because in distributed teams it is
common that more than one person is working on the same file at a time, it is important
that the source code management system is capable of merging changes into a file which
has been modified since the changeset originally was recorded. As long as no two editors
changed the same text at the same location in a file, the version control system usually
is capable of applying the changeset.

The outlined mechanism of version control in source code management systems works
very well for plain text files. However current implementations are still not suitable to
track and manage changes on structured documents. Therefore a workflow involving an
application independant version control system allowing a distributed team of authors
to collaboratively edit a set of structured documents without extensive synchronization
is currently barely realizable.

1.1.2. The Fruits of Standardization and Open Formats

During the last decade, XML2 was adopted throughout the software industry as a reliable
and standardized way to store structured information into files. Many major vendors are
dropping their proprietary file formats in favour of XML based documents, opening up
the opportunity for third party software to more easily retreive and process information
contained within them. Presumably this shift of paradigms from vendor specific opaque
file structures to open file formats has been accelerated by the success of HTML, the
lingua franca of the world wide web and also stemming from the same roots as XML.

While XML and HTML define the rules on how structured information gets written
to and is read from files, the DOM3 interface specifies a set of standardized methods
allowing us to retrieve and change this information. The DOM interface is implemented
in every modern web browser and accessible using JavaScript. Also there are implemen-
tations of the DOM in many other programming languages.

1.1.3. JavaScript Beyond the Web

The web browser is probably one of the most widely deployed class of software. People
access websites not only using their workstations and laptops but increasingly also using
mobile phones, tablets and e-book readers. Although web browser software and under-
lying operation system vary, the vast majority of those devices is capable of running
web applications, a combination of HTML documents generated on a web server and
JavaScript code executed on the client. The web browser therefore can be regarded as
an application platform just like Windows, Mac OS X or a Linux distribution.

2XML: Extensible Markup Language. Overview of Specifications form the World Wide Web Consortium
(W3C):
http://www.w3.org/standards/techs/xml

3DOM: Document Object Model, Specification Overview from W3C:
http://www.w3.org/standards/techs/dom

2
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2. Comparing and Merging Structured Documents

Although the browser is the original and most important platform for applications
built using JavaScript, the language is spreading to other domains. Most notably in
recent time is the fast pacing development of JavaScript-based server platforms. It has
been adopted as embedded scripting language of application software as well4.

Last but not least, JavaScript has some features which are interesting from a developers
point of view.

1.1.4. Putting it Together

The goal of this work is not to present a turnkey solution for versioning XML documents
or DOM structure. However our implementation should be capable of detecting changes
in structured documents, it should provide suitable file formats for the changesets and
it should include methods to merge changes back into the original document. Even if
that was modified in the meantime. The solution should run in modern web browsers
as well as under node.js5, a JavaScript server environment.

Aside from the implementation goals we want to identify tools and techniques sup-
porting professional software development in JavaScript.

The next section presents an overview of previous work, followed by an indepth ana-
lyzis of the LCS algorithm6 (Section 3). The latter playing an important role in the tree
matching algorithm XCC7 (Section 4) our own implementation is based on. In Section 5
we present a modified version of the original XCC patch format as well as the algorithm
utilized to apply such patches on documents. Following that we give an overview of our
implementation and important design decision in Section 6 before discussing our results
in Section 7.

2. Comparing and Merging Structured Documents

This section is an excerp from our Project Thesis covering difference algorithms and
merging strategies for structured documents [23].

2.1. Fundamentals

Before discussing difference detection between trees we will point out some important
terms and expressions. The model we present is very simple. As we get deeper into the
matter we will introduce more details.

2.1.1. Simple Model for String Sequences

The difference between two documents is commonly represented as a list of operations
that will convert the first document into the second [17]. A good diff-algorithm tries

4JavaScript is for example available as a scripting language in many products from Adobe Systems.
Most interesting in this context probably is the publishing suite around Adobe InDesing

5Node.js project website: http://nodejs.org/
6LCS: Longest Common Subsequence algorithm [18]
7XCC: XML Change Control [21]

3
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2. Comparing and Merging Structured Documents

to minimize the number of operations required in order to produce a space efficient
representation of the changes between two documents. The number of edit operations
(see Definition 3) is commonly referred to as the edit distance.

Most of the time we are interested in the actual changes instead of just a bare number
showing how much a document differs from another. The edit script represents this list
of operations introduced above (See Definition 1).

Definition 1. Edit Script

Edit Script: A sequence of operations required to convert one document into an-
other.

Anchor: A data unit used by the patching algorithm to identify a location where
an operation must be applied.

Sometimes we need even more information in order to allow automatic verification of
the applicability of a given edit script to a target document. We refer to those more
sophisticated type of change representation as a Patch (Definition 2).

Definition 2. Patch

Patch: An edit script with context information.

Context: Content that all compared documents have in common in the neighbor-
hood of where edit script operations will be applied.

Full context patch: A patch containing the intersection of all compared documents
in addition to the edit script.

At the very minimum two operations are required to express the conversion from one
document into another: insert and delete.

Definition 3. Operation

insert (anchor, content[, context])

delete (anchor[, oldcontent, context])

Note that context and oldcontent typically is not provided in serialized edit scripts but
only in patch formats.

2.1.2. Conforming Edit Script

Usually it is not enough to just compute any edit script, instead one wants to find a
particular solution conforming to a given criterion. This requirement is easy to fulfill by
introducing a cost-function for operations such that we can find a conforming edit script
by calculating the total cost of each candidate and selecting the one with minimal cost.

4
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2.1.3. Longest Common Subsequence vs. Shortest Edit Script

Given a constant cost function (cost : operation→ 1) a Minimal Conforming Edit Script
between two sequences A and B is identical to the Shortest Edit Script. Myers [18] has
shown that the computation of the shortest edit script is dual to the problem of finding
the Longest Common Subsequence (LCS) of the two sequences A and B.

2.1.4. Properties of Patch Formats

One way to serialize an edit script expressing the changes between two documents is
simply recording the operations along with their parameters and anchors to a text file8.
The anchor corresponds directly to a file location, e.g. a line number for flat text files.
No context information is recorded in the edit script file. Therefore an edit script in this
form can only be applied savely to the unmodified original document.

In addition to file location, the anchor in a patch file format9 also contains context
information. Context does not only consist of the content affected by the operation
but also of neighboring content which both, the original and the changed file have in
common. A patching algorithm may leverage this information in order to resolve and
verify operation locations even if the original file was slightely modified since the patch
was computed.

We require patch file formats to be invertible: A patch (P : A1 → A2) containing
the instructions to convert a given file A1 into a later version A2 should provide all the
necessary information such that a reverse patch (P−1 : A2 → A1) containing the
instructions to convert A2 into A1 can be derived from it. Invertibility of patches is
especially important in the domain of version control.

Another property we require is commutativity of patches: When applying two patches
(P1 : A1 → A2, P2 : A2 → A3) to the file A1 resulting in the file revision A3, P2

may be applied before P1 as long as context and operations of the two patches do not
overlap.

2.2. Tree Model

An XML document can be regarded as a rooted, ordered, labeled tree.

Definition 4. Document tree: A rooted, ordered, labeled tree T consists of a set
of nodes N , a finite alphabet Σ and a labelling function L : N → Σ, which assigns
a label to each node. R uniquely identifies the single root node and P denotes a
function returning exactly one node representing the parent of a given node. Node
order is determined by the ranking function r which returns the position of a node
within its siblings. The value function V may return user data for leaf nodes. This
definition closely follows the one given by Bille [4].
T = (N,R, P : N → N,L : N → Σ,Σ, V : N → value, r : N → int)

8With GNU diff an edit script representation can be produced using the -e switch on the command
line

9Use the switch -u in GNU diff to produce patches in the unified patch format which shows the
properties we describe here

5



2. Comparing and Merging Structured Documents

Note that especially in graph theory node-labels normally are considered unique. In
contrast in the literature on tree comparison, node labels are not unique and therefore
may not be used for object identification.

Also note that some applications like databases may ignore node order completely
while for other applications like word processors the order is an important aspect of
the document and must be taken into account when comparing two files. If not stated
otherwise node order is important in the following discussion of algorithms.

2.2.1. Requirements for Patch Format

It is time to revisit our definition of edit scripts and patches and extend them in order
to match the new requirements of hierarchical structured documents.

Edit Script: Anchors must be extended such that we can specify paths relative to a
reference node. For practical reasons most of the time the reference will be the
root node.

Patch: Context must be expressible in terms of nearby nodes, namely ancestors, siblings
and descendants.

2.2.2. Tree Operations

When operating on sequences of characters or lines it is sufficient to define two operations
in order to construct an edit script, namely insert and delete. In order to express edit
scripts in tree structures with the properties we defined above, we introduce one more
operation: relabel. Definition 5 specifies those basic tree operations. Several algorithms
replace this basic set with methods operating on whole subtrees or sequences of subtrees
(See Definition 6). Figure 1 depicts basic- and extended operations on trees.

2.3. The Generic Tree to Tree Correction Problem

2.3.1. Tai (1979)

In 1979 Tai expressed the tree-to-tree correction problem [24] as a generalisation of the
edit distance on sequences. Today his algorithm has no practical relevance anymore but
it still serves as the basis of adapted and improved algorithms.

Maximum complexity of Tais algorithm in time as well as in space is O(|T1||T2|D2
1D

2
2)

where |Tn| denotes the number of nodes and Dn the maximal depth of a tree. The
worst case where no two nodes from T1 and T2 have the same label and both trees have
maximal depth therefore results in an upper bound of O(|T1|2|T2|2) in time and space. If
both trees have a similar number of nodes n then we finally get worst case upper bound
in time and space complexity of O(n4).

6
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2. Comparing and Merging Structured Documents

2.3.2. Zhang and Shasha (1989)

Zhang and Sasha published a new algorithm in 1989 that improves on runtime and
space requirements [26]. Key difference to Tais algorithm is the postorder traversal of
the trees. In Tais algorithm the comparison of two trees starts on the root node then
each of its child nodes is visited recursively until the right most leaf node of both trees
is reached. In contrast Zhang and Shasha algorithm starts with the leftmost leaf of
both trees working its way through its siblings then going through parents siblings until
finally reaching the root node (see Figure 2).

Interestingly enough this algorithm actually operates on ordered forests10 and there-
fore solves an even more generic problem than Tais algorithm.

In order to separate tree distance and forest distance calculations, Zhang and Sasha
introduced so called keyroots, i.e. nodes having a sibling on their left and the root node.
During edit distance calculations, an array of the forest distance between two keyroots
is maintained(see Figure 2).

A

B C D

E F H I

G K L

Figure 2: Zhang Sasha: postorder tree traversal (red line) and keyroots (green shaded
nodes).

Upper bound in complexity of this algorithm is O(|T1||T2|min(L1, D1)min(L2, D2)) in
time and (|T1||T2|) in space. Again |Tn| denotes number of nodes Dn tree depth and Ln

number of leaves. Worst case input for this algorithm is a completely one-sided tree with
n nodes where n

2 are leaves and with a depth of n
2 + 1 as shown in Figure 3. Considering

two trees having the same size n, worst case time complexity becomes O(n4) while worst
case space complexity remains O(n2).

2.3.3. Klein (1998)

A refinement on Zhang and Sashas algorithm was proposed by Klein [14] in 1998. The
decomposition of trees into “heavy paths” yields another improvement on maximum
time complexity. However Zhang and Shashas algorithm still outperforms Kleins on
many input sets. On the other hand Kleins algorithm also is suited for edit distance
computation between unrooted trees, i.e. trees without a designated root node.

10Ordered forest: sequence of ordered trees
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2. Comparing and Merging Structured Documents

1

2 3

4 5

6 n-1

n

Figure 3: Worst case input tree for Zhang Sasha algorithm

Kleins algorithm runs with O(|T1|2|T2|log|T2|) in time and with (|T1||T2|) in space.
For two similar sized trees with n nodes, the complexity therefore becomes O(n3 log n)
in time and O(n2) in space.

2.3.4. DMRW (2009)

In 2003 Dulucq and Touzet showed that Zhang Shasha as well as Klein algorithm can
be described within a more general framework [11]. They introduced the notion of
decomposition strategy as the discriminator between those algorithms. Based on that
work Demaine, Mozes, Rossman and Weimann improved the Klein-algorithm in 2009
and achieved the new worst case time complexity of O(n3) [10].

2.3.5. Recap

In this section we pictured the milestones in the development of tree edit distance al-
gorithms aimed at solving the generic tree to tree correction problem by finding the
minimal conforming tree edit distance. In scientific domains, e.g. when working out
the differences between RNA secondary structures, cubic worst case runtime may be
acceptable. When comparing structured documents however it might be interesting to
trade minimality of the edit script for better runtime performance.

2.4. Unit Cost Algorithms

2.4.1. mmdiff and xmdiff (1999)

Recalling the duality of shortest edit script and longest common subsequence (see Sec-
tion 2.1.3) it is possible to design more efficient edit distance algorithms by constraining
the cost-function of operations to a constant (unit) value. Chawathe [5] presented two
algorithms using the same technique for computing the tree edit distance like the one
introduced by Myers [18] for sequences.

9



2. Comparing and Merging Structured Documents

While mmdiff is designed to run in main memory, xmdiff is able to handle arbitrary
big documents. For mmdiff upper limits in time and space is O(|T1||T2|), boiling down
to O(n2) for similar sized trees. While having constant upper limits in memory usage,
the xmdiff algorithm introduces quadratic IO costs.

2.5. Diff Algorithms for Structured Hierarchical Data

2.5.1. Extended Zhang Sasha (1995)

The changes introduced by people when editing documents are normally more complex
than the three basic operations insert, delete, relabel defined previously (see Definition 5).
Therefore an edit script comprising only of basic operations may mask the actual meaning
of the changes found between two document versions. In 1995 Barnard, Clarke and
Duncan proposed an extended version of Zhang Sasha algorithm [3] in order to enhance
the expressivity of an edit script in the domain of document comparison.

Extended Zhang Shasha introduces three additional operations performed on whole
subtrees: insertTree, deleteTree, swap. Swapping is only allowed on adjacent siblings.

While this algorithm improves on edit script semantics and generally produces smaller
deltas with less operations compared to the original Zhang Sasha algorithm, it does not
help narrowing complexity bounds and memory requirements. However it produces
minimal conforming edit scripts, just like its predecessor.

2.5.2. FastMatch EditScript - FMES (1996)

FMES was presented by Chawathe, Rajaraman, Garcia-Molina and Widom in 1996 [7]
as a complementary algorithm to Zhang Sasha tailored to generating edit scripts in
structured documents. The set of operations is however rather different to the one
of Zhang Shasha. In FMES insert and delete operations are restricted to leaf nodes,
relabel is substituted by an update operation targeting node values instead of node labels.
Additionally a move operation is introduced capable of changing the parent of a given
subtree and also its position within its siblings.

A key property of this algorithm is the separation of change detection into two sub-
problems:

1. Find a good matching between two trees

2. Compute the edit script

If object identifiers are present in the data the solution to the first problem is trivial and
leads to a speedup of the whole process. The algorithm is capable of assigning object
identifiers if necessary based on node labels and values. For interior nodes the matching
criterion is based on their child nodes.

The matching algorithm is based on a set of criteria and assumptions appropriate for
structured data in the domain of document processing resulting in faster runtime at the
expense of potentially non-minimal edit scripts:

10



2. Comparing and Merging Structured Documents

Criterion 1: Leaf nodes can be matched only if their labels are equal and their values
are similar enough.

Criterion 2: Internal nodes can be matched only if a certain percentage of their leaves
match.

Assumption 1: Labels follow a structuring schema where certain labels only are allowed
as child nodes of others.

Assumption 2: Every node in one tree only has at most one node in the other tree
resembling it closely.

Upper bound in time complexity for this algorithm is O((L(T1) +L(T2))e+ e2) where
L(Tn) represents the number of leaf nodes of a given tree and e is the weighted edit
distance (typically, e � n) [7] representing the sum of the weights of all operations
where an insert and delete each count 1, an update counts 0 and the weight of a move is
equal to the number of leaf nodes which are descendants of the node in question. Given
two similar sized trees of the size n which do not have any nodes in common, worst case
time complexity becomes therefore O(n2).

LaDiff, the authors implementation of FMES, took two versions of a LATEX docu-
ment and generated a third one with annotations on additions and deletions as well as
indications where parts of text were moved to another location. An example is given
in [6].

2.5.3. BULD (2001)

Unlike FMES, the BULD algorithm by Cobéna, Abiteboul and Marian is designed ex-
clusively for XML documents [9]. Operations are similar to FMES however insert and
delete target subtrees and not leaf nodes.

In some XML structures it is common that certain tags occur more frequent and
in consecutive sequences — for example think of paragraphs (P-Tag) in an XHTML
document. Therefore XML tag names are not the best choice as a mapping criterion.
Instead a hash on node values and subtrees is calculated which is used in order to find
corresponding nodes and subtrees in the other document. When a DTD is available,
BULD will also consider ID attributes.

The BULD algorithm runs in O(n log n) time and O(n) space where n is the number
of nodes of both documents.

2.5.4. faxma (2006)

A rather unique approach on finding differences in XML documents was presented by
Lindholm, Kangasharju and Tarkoma in 2006 [15]. Instead of matching the tree structure
of documents, the sequence of tokens emitted by the XML parser is compared using a
“rolling hash”11. A similar method is used in the rsync tool. After working out the
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2. Comparing and Merging Structured Documents

common parts in the token streams, the results are mapped back to the XML tree
structure (the metadiff).

Runtime is expected to be linear for two document versions with small and local
changes. However for two completely different documents of the same size n, the algo-
rithm runs in O(n2).

2.5.5. XCC (2010)

Recently Rönnau and Borghoff released a framework consisting of libraries and tools
for diffing, patching and merging XML office documents [21]. The diff algorithm shares
some aspects of BULD. The operations insert and delete are extended to address tree-
sequences. The move operation is realized by simply interlinking equivalent insert and
delete operations. Like in BULD hash-values are calculated for all nodes in a bottom up
manner.

Worst case complexity is O((L(T1) + L(T2))D + I(T1) + I(T2) + D) in time and
O(|T1| + |T2|) in space where |T1| + |T2| is the sum of the number of nodes in both
documents, L(Tn) the number of leaves, I(Tn) the number of internal nodes and D the
minimal edit distance. Note that the first expression is due to the use of Myers O(ND)
difference algorithm for finding the Longest Common Subsequence among the leaves of
both trees. Considering two completely flat trees with only one internal node each (the
root node), where the value of no two leaves are equal, worst case time complexity be-
comes O(n2) for two trees of the size n because of parameter D > n. Complexity in
space remains linear though.

The authors claim that the final move-detection step does not influence complexity
because a hash-map with linear lookup time is used to match equivalent insert and delete
operations.

The LCS (Longest Common Subsequence) and the XCC diff algorithm are discussed
in depth in Section 3 and Section 4 respectively.

2.5.6. A Note on the move Operation

Recall that no single algorithm for the generic tree to tree correction problem presented
in the former section employed a move operation. In order to understand the problem
imagine an edit script representing the changes between two ordered trees where all
move operations have been deleted. The result is exactly an edit script representing
the changes between two unordered trees. However this problem has been shown to be
NP-complete for the general case [4].

So what made it possible to devise algorithms with less than quadratic complexity and
support for the move operation at the same time? By matching corresponding insert and
delete operations during a post processing phase, minimality of the resulting edit script

11A rolling hash is a hash value calculated over the symbols within a window of a fixed size. Symbols
outside the window do not contribute to the hash value. However when the window is “slided” along
the input sequence, the hash values of overlapping windows can be reused which makes the calculation
of subsequent values very efficient. The Rabin Fingerprint is an example of a rolling hash.
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3. Longest Common Subsequence (LCS)

is not guaranteed anymore which is unacceptable for the generic case but reasonable in
the domain of document comparison [8].

2.5.7. Recap

We can identify several key ideas in the work done by a number of research groups
in order to adapt the generic tree edit distance problem to the domain of document
comparison:

1. Constrain the cost model of operations (See 2.5.1). Instead of allowing to assign
a cost to each and every single operation within an edit script, the cost model is
constrained to constant units in order to reduce runtime complexity.

2. Heuristically reduce possible candidates in the matching phase.

3. Accept non-minimal edit scripts in order to further reduce complexity.

4. Adapt scope of operations to enhance readability (i.e. use one insertTree instead of
many insert node operations). Also introduce new operations like move to better
reflect the meaning of changes.

3. Longest Common Subsequence (LCS)

An algorithm identifying the Longest Common Subsequence (LCS)12 of two strings plays
the most important role, both in traditional line based diff-tools such as GNU diff and
in the XCC diff algorithm for DOM trees, which will be described in greater detail
afterwards. In this section we discuss Myers widely used LCS algorithm [18] featuring
quasi-linear time and space complexity.

3.1. Myers Edit Graph

Myers introduced the concept of the edit graph which shows that finding the Longest
Common Subsequence of two strings is a special instance of the single-source shortest
path problem. Consider two strings A with the length N and B with the length M .
Construct a grid with N columns and M rows, i.e. with N + 1 vertical and M + 1
horizontal grid lines. Label the vertical grid lines with the characters from A starting
at the second grid line with the first character and ending with the last character at
the last grid line. Same procedure is done for string B and the horizontal grid lines.
Now each intersection (x,y where x ∈ [0, N − 1] and y ∈ [0,M − 1]) between vertical

12 Note that the Longest Common Subsequence is not equivalent to the Longest Common Substring
problem. The Longest Common Substring of two strings is a sequence of consecutive characters
contained in both strings. In contrast the elements of the Longest Common Subsequence do not have
to be contiguous in both strings.

Consider the two strings “zappa” and “appear”. The Longest Common Substring of those two
strings is obviously “app” (i.e. zAPPa, APPear). The Longest Common Subsequence (LCS) however
actually is a,p,p,a (i.e. zAPPA, APPeAer).
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3. Longest Common Subsequence (LCS)

and horizontal grid lines represents a mapping from a single character from string A at
position x to string B at position y.

Given that (0, 0) denotes the top left and (N,M) the bottom right corner of the grid,
every vertex is connected to its right hand neighbor alongside the horizontal grid line
as well as to the next vertex downwards along the vertical grid line. Each of those
orthogonal edges represent an edit operation, i.e. delete character at position x from
string A for horizontal edges and insert character at position y from string B for vertical
edges. Additionally a diagonal edge from (x − 1,y − 1) to (x,y) is introduced for every
character in A at position x if it is equal to the character in B at position y.

The Longest Common subsequence is contained in the path from (0,0) to (N ,M)
with the maximum number of diagonal edges. Analogous the shortest edit script is
represented by the path with the least orthogonal edges. By giving orthogonal edges a
cost of 1 and diagonal edges a cost of 0, the problem of finding the path with the most
diagonal and the least orthogonal edges becomes a shortest path problem in a weighted
directed acyclic graph (See Figure 4).

Figure 4: Edit graph: Horizontal edges represent delete- and vertical edges insert-
operations. No change is necessary when following diagonal edges.

3.2. X-K Coordinate System

Considering that the most interesting elements of the edit graph are the diagonal edges,
we do not use cartesian (x-y) coordinates but rather an alternative system in order to
identify and store locations in the grid the edit graph is based on.

With k ∈ [−M,N ] a k-line is a straight line through (k,0) with a slope of 1, i.e. a
diagonal going through (k,0), (k+1,1) . . . (k+n,n) in the grid (See Figure 5). Note that
we can easily derive the y-component of any point in the grid when x and k are known
using: y = x− k.
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3. Longest Common Subsequence (LCS)

Therefore a k-point (x,k) translates to the cartesian point (x, x− k). For example the
top-left corner of the graph is located at k-point (0,0) and the bottom-right corner is at
k-point (N , N −M).

Figure 5: K-Line: Diagonal lines going through (k, 0) where k ∈ [−N,M ]
.

3.3. Basic Greedy LCS Algorithm

Because the anatomy of the edit graph follows strict rules it is not necessary to build
up a complete graph data structure and extract the shortest path using a generic al-
gorithm like e.g. Dijkstra. Myers gives a basic greedy algorithm for finding the LCS
in O((N + M)D) where M and N are the number of elements in sequence A and B
respectively and D denotes the number of edit operations necessary to turn A into B.

A D-path is a path starting at k-point (0,0) containing D orthogonal edges and any
number of diagonal edges. Therefore a D-Path can be composed by a (D-1)-path followed
by an orthogonal edge (i.e. one edit operation) and by zero or more diagonal edges.
Myers used the term snake for the diagonal part of a D-path. We refer to the bottom-
right end of a snake as the snake-head.

Starting from k-point (0,0) and D = 0 we extend iteratively the furthest reaching D-
path on every possible k-line, incrementing D after each iteration. The resulting x-value
on a given k-line is stored into the map V indexed by k. The starting points for new D-
Path segments are derived by selecting the end points of the furtesh reaching (D-1)-Path
stored in V . As long as no D-path reaches (M ,N) this procedure is repeated.

Obviously there is no point in examining each and every k-line from −N to M in every
iteration because D-paths starting at (0,0) cannot reach k-points beyond k ∈ [−D,D].
Also a D-path segment starting at k can only end on k + 1 or k − 1, therefore we only
have to examine half of the k-lines in each iteration.

In order to accomplish this an outer loop is equipped with the loop variable D starting
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3. Longest Common Subsequence (LCS)

at 0 and incrementing by 1 as long as no D-path reaches (M ,N). Within an inner
loop every second k-line from −D to D is examined in order to find the new furthest
reaching D-path. In each iteration of the outer loop D-1-paths are extended to D-paths
by generating new snake-heads by the inner loop. We can depict the D-contour as a line
connecting all the endpoints of the newly generated snake-heads (See Figure 6).

Figure 6: D-Paths, Snake-Heads and D-Contour: A D-Path starts at (0,0) and contains
D orthogonal edges (edit operations). Snake-heads (depicted using arrow-
heads) denote the bottom-right end in D-paths. Connecting all the snake-heads
after each iteration of the outer loop results in the d-contour (green line). The
red D-path represents the Longest Common Subsequence (diagonals) as well
as the shortest edit script (orthogonal edges).

In order to restrict the runtime of the algorithm the outer loop can be aborted when
D = MAX where MAX < N +M . Because of this property this algorithm is sometime
referred to as a d-band algorithm.

Listing 7a illustrates the complete algorithm using JavaScript Syntax. In this im-
plementation the length of the shortest edit script d is calculated and returned. Also
an object appropriately representing a snake is constructed and appended to an array.
After lcs forward terminates, the Longest Common Subsequence can be determined
by backtracking from the last snake which obviously ends in (M ,N) through to all its
ancestors to (0, 0).
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3. Longest Common Subsequence (LCS)

3.4. The Middle Snake Algorithm — A Linear Space Refinement

The problem with Myers basic LCS algorithm presented in the previous section is its
non-linear space requirements. Given the time and space complexity of O((N + M)D),
on input where N = M = D (both strings have equal length but do not contain any
common characters), time and space complexity becomes O(N2).

The non-linear space requirements are due to the fact that each snake has to be kept
in memory until the algorithm terminates. In order to reduce space complexity this
drawback has to be eliminated. A naive approach would be to just return the last snake
when the algorithm terminates and then start over again and return the one before,
repeating this process until the starting point is reached. During that process only the
snakes required to construct the LCS afterwards have to be kept in memory.

There is however a better approach. Listing 7b shows a variant of the basic LCS
algorithm starting at (N ,M) and working towards (0,0) effectively discovering snakes by
starting in the bottom-right and working towards the top-left corner of the edit graph
(see Figure 8).

Figure 8: Edit graph produced by backward LCS algorithm version. Note that the
choosen path differs from the one discovered by the forward algorithm pic-
tured in Figure 6. However the result (d = 7) remains the same.

Considering the striking resemblance of the two versions of the basic algorithm (Fig-
ure 7), the idea of running them simultaneously until the furthest reaching d-paths from
each direction overlap seems pretty obvious. Myers [18] presented an algorithm identify-
ing the middle snake in such a way (see Listing 9a). Departing from there the rest of the
LCS can be devised by recursively running the algorithm on the remaining parts left-
and then right of the middle snake. Listing 9b illustrates the algorithm in JavaScript
syntax while Figure 10 shows several steps graphically.
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3. Longest Common Subsequence (LCS)
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3. Longest Common Subsequence (LCS)

(a) Linear space LCS algorithm starts out from
top-left (blue edges) and from bottom-right (ma-
genta edges) simultaneously.

(b) End of first recursion: After identifying the first
middle snake (single horizontal black edge), the
algorithm starts over within the left part (black
frame) and discovers the second middle snake
(black edge inside frame).

(c) Left part complete: Algorithm discovered three
common symbols (red circles) and continued
with right half of the graph.

(d) LCS complete: Note that only the green path
segments were kept in memory, red and blue can
be discarded as soon as a middle snake is found.

Figure 10: Linear space LCS algorithm illustrated
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4. XCC Diff in Detail

3.5. LCS Time and Space Complexity

Myers gives O(ND) as the maximal time complexity for his algorithm, where N denotes
the number of all symbols from both sequences and D the length of the shortest edit
script, i.e. the number of necessary changes. He also showed that the expected time
performance is O(N + D2). Using the middle snake algorithm as outlined above, space
complexity is only O(N).

4. XCC Diff in Detail

Virtually any recent diff-algorithm for hierarchical structured documents since Chawathes
FMES (discussed in Section 2.5.2) divides the problem of identifying change operations
into two subproblems. Generate a matching of the two trees and after that construct
the edit script or patch.

4.1. Tree Operations

XCC supports an update operation on a single node, insert and delete operations on
tree sequences and a move operation for subtrees. Refer to Definition 6 for an indepth
description.

4.2. Tree Matching

During the matching phase, for each node n in T1 the algorithm tries to find one cor-
responding node n′ in T2 respecting certain matching rules. A matching between two
nodes is a one-to-one relationship. If the nodes n and n′ are partners in a matching, we
also say that they form a pair.

4.2.1. XCC Matching Rules

Rönnau and Borghoff distinguish between structure preserving and structure affecting
changes to documents in XCC [21]. In terms of edit script operations, the former ex-
pression translates to update operations while the latter subsumes insert- and delete
operations. Consequently we can say that structure preserving changes target single
nodes taking part in the matching while structure affecting changes target subtrees out-
side the matching.

The fundamental matching rule in XCC reflects this differentiation and also defines
precisely a structure preserving change: Let p be the parent of n and p′ the parent of n′,
n and n′ may not form a pair if p and p′ are no pair either. Note that this rule can be
applied recursively in order to decide whether two candidate nodes may form a pair or
not. As a consequence no two nodes may form a pair if their tree depth is different. Also
update operations may not be applied to any nodes moved from one subtree to another.

Regardless of any other rules, the root nodes of the trees T1 and T2 always form a
pair.
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4. XCC Diff in Detail

4.2.2. LCS Among Leaf Nodes

The XCC tree matching algorithm starts out by calculating the Longest Common Sub-
sequence (LCS) between the leaf nodes of T1 and T2. In addition to the fundamental
matching rule presented above, leaf nodes may only form a pair if their (Hash-)value is
equal.

Each pair of nodes (n, n′) taking part in the LCS and also complying with the fun-
damental rule is added to the matching. Additionally all ancestor pairs are added to
the matching also, regardless of whether their values are equal or not. The complete
algorithm is depicted in Listing 11a.

4.2.3. Extended Update Detection

Because there is a great chance that the values of leaf nodes change when a document is
edited, the XCC tree matching algorithm is also capable of detecting modified leaf nodes
in a second pass. The matching rules are a little bit different than during the first pass.
In addition to the fundamental matching rule defined before, nodes n and n′ only may
form a pair if their nearest preceeding siblings which take part in the matching also form
a pair. Obviously the values of leaves do not have to be equal, however unlike during
the first pass, the values of the nodes in their ancestor chain must be the same.

In order to identify potential pairs, the trees are traversed recursively in preorder
departing from the root node. When a pair of nodes is found which is not yet recorded
in the matching, it is processed according to the rules stated above: if both candidates
are leaf nodes, they are added to the matching otherwise they only get added if their
values are the same.

Our version of the extended update algorithm departs significantly from the original
implementation. This is because the current version of the original implementation does
not quite match the stated linear bounds in time complexity under worst case conditions.
Figure 12 depicts the worst case input for the original implementation. Listing 11b shows
our version of the extended update algorithm. However in some situations our linear
time version does not produce the same results like the original implementation.

We considered dropping extended update detection entirely. However the results of the
leaf-LCS pass are sometimes not optimal. If two document versions only have few leaf
nodes in common but the overall document structure remained the same, some internal
nodes will be included into the delta even if they were not changed at all. This can lead
to patches which are difficult to merge. An extreme case is depicted in Figure 13.
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4. XCC Diff in Detail
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4. XCC Diff in Detail

r

a ... u v w

(a) Tree 1

r

x y z ... a

(b) Tree 2

Figure 12: Worst case scenario for original XCC leaf update implementation: The com-
mon node a takes part in the leaf-LCS while all other nodes do not match
and therefore are examined during the leaf update detection pass.

html

head body

title

draft

h1 p

wrlod draft text

(a) Tree 1

html

head body

title

final

h1 p

hello world final text

(b) Tree 2

Figure 13: Worst case scenario for XCC when extended update detection is skipped.
Because the LCS pass did not detect any common leaf nodes, internal nodes
are not matched neither. Even if the document structure is exactly the same.
The only node in the matching (green) is the root node.
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4. XCC Diff in Detail

4.3. Skel-match Algorithm: A Modified Version of XCC

Not satisfied with the way extended update detection works in the current XCC imple-
mentation we set out to find a solution which is both, straightforward to implement and
also easier to analyze.

We stick to the basic idea of XCC, namely that the actual content is contained near
the bottom of the document tree. Consequently we also have to expect that when the
content of structured documents is modified, most of the changes will take place on leaf
nodes.

Like in XCC we start out with an LCS over document content13. Also we apply the
exact same matching rules. The result of this pass is a partial matching which contains
unchanged content as well as all nodes in the ancestor chain of matched content nodes.

In the second pass we identify unchanched structure. We accomplish this by collecting
sequences of unmatched siblings enclosed by matched pairs from both trees. Note that
each such sequence from T1 therefore has a corresponding sequence in T2. For each
sequence pair we collect the bottom-most structure nodes, i.e. all structure nodes which
do not have any other structure node as a descendant. We refer to this sequence of
bottom-most structure nodes as the structure contour. At this stage we have derived a
sequence of pairs of structure contours.

We now compute the LCS for each pair of structure contour sequences. Unlike in the
first pass not only the values of the nodes in question have to match but also the values of
all their unmatched ancestors pairs. The rule can be implemented easily using recursion.
Figure 14 depicts the workings of the common structure detection step graphically. The
JavaScript implementation of the second pass is given in Figure 15. Note that the first
pass of Skel-match is identicaly to the first pass of XCC diff.

4.4. Skel-match Complexity

As mentioned before (see Section 3.5) the LCS time complexity is given with O(ND).
Because our algorithm starts out with the computation of the LCS among the leaf nodes
between two trees, the time complexity of this first pass is also O(ND) where N denotes
the sum of the number of leaf nodes of both trees and D the number of edit operations.

During a subsequent pass, skel-match applies the LCS repeatetly to sequences of
parent nodes (together with their unmatched ancestors) of the leaf nodes which were
not matched in the first pass. The number of necessary LCS passes depends on the
number of changes detected during the leaf-LCS. Therefore at most D additional LCS
passes are necessary. Also the maximum length of each parent-node sequence is at most
D.

It follows that either few LCS runs with long input sequences or many LCS runs with
short input sequences are necessary in the second pass. In order to analyze the different

13In our implementation it is possible to specify which nodes qualify as document content. In order to
allow aggregation of adjacent operations when diffing XML documents, elements who only have one
single text node as a child are treated as content while elements with more children are treated as
structure.
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r

a b c d

a1 b1 b2 c1

x1 x2 x3 x4 x5

x6

(a) Tree 1 (original)

r

a b c d

a1 b1 b2 c1

y1 y2 y3 y4 y5

y6

(b) Tree 2 (modifications in leaf nodes)

content

r

a

b c

d

a1

b1 b2 c1

x1 x2 x3 x4x5 x6

(c) Green shaded nodes have been matched by LCS pass
over content (aka leaf nodes). Blue shaded nodes b1,
b2, c1 and d represent two structure contour sequences.
The former derived from the unmatched sequence of
siblings b and c, the latter only consisting of d. During
the LCS pass over structure contour, also the values
of unmatched ancestor nodes will be examined. E.g.
when testing if b1 in tree 1 is the same as b1 in tree 2,
also the values of their parents are examined (b).

r

a b c d

a1 b1 b2

x1 x2 x3

c1

x4 x5

x6

(d) Matching found using the skel-match
common structure detection.

Figure 14: Skel-match: detection of common structure
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4. XCC Diff in Detail

cases, we introduce C ∈ [0, D] specifying the number of LCS runs necessary in the second
pass. The maximal possible length of an input sequence is then given by M = D − C.
The symbol Mi denotes the length of the input of the nth LCS run and Ei the length of
the corresponding edit script. The complexity of the second step is therefore:

O(

C∑
i=1

MiEi)

Because of the product MiEi and Mi ≥ Ei, we optain a maximum from the sum when
C = 1, M1 = D−1 and E1 = M1. Therefore the maximal time complexity of the second
step is given by:

O(DE)

Where D corresponds to the number of changes detected by the leaf-LCS from the
first pass and E to the sum of changes found in all LCS runs from the second pass. The
time complexity of the whole algorithm is therefore given by:

O(ND + DE)

Our algorithm does not require any additional data structures. Therefore space re-
quirements are the same as for the underlying LCS algorithm. We use the linear space
LCS variant and therefore our algorithm runs with O(N) space complexity.

4.5. Skel-match Runtime

We empirically verified the lower and upper bounds of the stated runtime complexity
using input trees constructed by a simple tree model with a constant depth and a constant
child count. Each internal node has a specified number of child nodes and the leaf nodes
all have the same given depth.

For the minimal runtime analysis shown in Figure 16 we used two trees with identical
structure and node values such that no changes are detected by the matching algorithm.
We used trees of depth 5 with child counts from 1 through 15 ending up with tree sizes
up to 800’000. The worst case test graphed in Figure 17 was conducted with a tree
depth of 3 and therefore tested a range of tree sizes up to 3500.

4.6. Delta Construction

After optaining a partial matching, a set of operations necessary to turn T1 into T2 is
collected during a recursive traversal of the tree, departing from the root node.

Recall that the root node always takes part in the matching as well as all the ancestors
of a pair of matched leaf nodes. Therefore node-update operations can be detected by
comparing the value of every node taking part in the matching with the value of its
partner.

The nodes which do not take part in the matching only appear in one of the two trees.
Nodes from T1 which do not have a partner in T2 should be deleted while nodes from
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4. XCC Diff in Detail

Figure 16: This chart depicts the runtime of the Skel-match algorithm for completely
identical trees. The number of edits D as well as E is much smaller than the
combined size of the trees N . The correlation factor of R2 = 0.9950 found
using linear regression indicates a pretty close match to the stated runtime
complexity O(ND + DE), i.e. O(N) because D and E can be neglected.

Figure 17: The runtime of the Skel-match algorithm with worst-case input is shown in
this graph. Input trees are of the same structure but with completely different
node values. The number of edit operations D and also E is therefore equal
to the number of nodes of both trees N . The measured runtimes fit perfectly
with the quadratic polynome calculated using power-regression as indicated
by the correlation factor of R2 = 0.9983. For worst case input, the runtime
complexity becomes O(N2)

.
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5. XCC Patch in Detail

T2 not appearing in T1 should be inserted. It follows from the XCC matching rule14

that if a node does not take part in the matching, not one of its descendants may take
part in the matching neither. Therefore we can address insert and delete operations by
specifying the root nodes of the subtrees.

Our implementation is capable of collecting adjacent sequences of insert and delete
operations into a single tree-update operation. This is very similar to the concept of
“hunks” used in the unified diff format of GNU diff [2].

5. XCC Patch in Detail

5.1. Patch File Format

A patch file contains a set of operations necessary to turn one structured file into another.
Each operation is addressed using a path departing from the root node. Each path
component is a zero-based index into the children list of the parent node. The root node
is addressed by an empty path. A path always points to the position in the original tree
(T1) where the first node is located which is affected by the operation. We refer to this
node as the anchor. In the case of pure insert operations there are no nodes directly
affected in T1. For such operations, the path points to the first node after the insertion-
point. Note that when a subtree should be inserted as the last child of an existing node,
the path will point into the blank space after the last child in T1 (see Figure 18).

0 1 2

1/0 1/1

Figure 18: Operations are adressed through XPath-style expressions. In our implemen-
tation the root node is specified using an empty path. Insert operations may
refer to positions, which do not exist yet (indicated by a dashed node at
position 2)

.

In order to support merging changes into documents which have been modified since
the delta was recorded, the value of a number of context nodes is also stored as part of
the operation. The context consists of four values of the nodes immediately preceeding
the anchor node and four values of the nodes following the last node affected by the
operation in T1. Obviously a linearization of the tree is required to meaningfully refer to
leading and trailing context nodes. We use document order for that matter. Figure 19
shows an example of our patch file format.

14Fundamental XCC matching rule: No two nodes may form a pair if their parents do not form a pair
either
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5. XCC Patch in Detail

1 <?xml version ="1.0"?>

2 <delta>

3 <forest path="0/0">

4 <context >;; df4a3fb ;1 acdce3a </context >

5 <remove >

6 <title >Information is knowledge </title >

7 </remove >

8 <insert >

9 <title >Frank Zappa: Information is not knowledge </title >

10 </insert >

11 <context >4251892f;662 e3aec ;1290 e7c6 ;662 e3aec </context >

12 </forest >

13 <node path="1">

14 <context >df4a3fb ;1 acdce3a ;6735 e4ae ;14 b60978 </context >

15 <remove >

16 <body class="draft"/>

17 </remove >

18 <insert >

19 <body/>

20 </insert >

21 <context >662 e3aec ;1290 e7c6 ;662 e3aec ;35380707 </context >

22 </node>

23 </delta >

Figure 19: Example of delta.js patch file format. Node update operations (Line 13)
affect a single node, the body-tag in this example. Forest operations target a
sequence of subtrees (Line 3). Leading and trailing context is expressed using
the hash values of nodes preceeding and following the affected node or tree
sequence.
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5. XCC Patch in Detail

Note that the choosen file format differs in a number of ways from the one proposed by
the XCC authors in [22] and [20]. First, we do not include the hash value of any target
node into the fingerprint. Considering the example from Figure 19, in the original XCC
delta format, the hash values of the body-tag would also be included into the context
fingerprint. As a result our delta is even easier to invert. It is sufficient to exchange
the contents of the remove- and insert-tag of a given change. Second our delta format
supports the aggregation of consecutive insert- and delete-operation into one “forest”
operation.

5.2. Weighted Context Fingerprints

The context fingerprints outlined in the previous section are used to ensure that a given
change is applied to the correct location during the patch process. Our implementation
mostly follows the XCC approach discussed in [22] and [20].

When resolving an operation, a first guess is attempted by following the operations
path-property in the target tree. The last position which was resolved successfully is
used as the departure point for the following phase.

A pattern consisting of a head, a body and a tail sequence is derived from the oper-
ation. The head and the tail context is taken directly from the appropriate properties
of the operation object. In the case of node-updates, where a single node is the target
of the operation, the body corresponds to the node-value of the target node, i.e. the
node contained in the remove-part of the operation. When resolving forest operations,
the body is computed by flattening all subtrees contained in the remove-section of the
operation into one sequence in document order.

Given a fingerprint radius r and an integer value denoting the distance i of a context
value to the body, the weighting function w(i) with i ∈ [−r, r]\0 assigns a weight to each
position of the head and tail context. Individual weights are normalized using the factor
wn such that the sum of all weights from head and tail is 1 for any r. Figure 20 depicts
a pattern and the assigned weights for the head and tail context, Definition 7 gives the
normalized weighting function for the context of a fingerprint with radius r.

Definition 7. XCC Weighting Function

w(i) =

(
1
2

)|i|
wn

with wn = 2
r∑

i=1

(
1

2

)i

Figure 20: The weights for the head and tail context in a pattern with the fingerprint
radius r = 2. Note that the body is always required to match, therefore no
weights are assigned to body elements.
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5. XCC Patch in Detail

This pattern is now matched against all positions near the initial guess in a given
environment size (default s = 6) in document order: p ∈ [−s, s]. For each position a
match quality is calculated using the function q(p) given in Figure 21. The position with
the maximum match quality is then used as the anchor of the operation. If the match
quality does not exceed a specified threshold value, the change is rejected. The authors
of XCC found that a threshold value of 0.7 yields good results. A simple matching
process with a fingerprint with radius r = 2 is outlined in Figure 22.

q(p) =

{
qh(p) + qt(p) if all nodes from body match

0 otherwise

qh(p) =
−r∑

i=−1
w(i, r)×m(p + i)

qt(p) =

r∑
i=1

w(i, r)×m(p + i + length(body))

m(i) =

{
1 if value from pattern matches value of subject at position i

0 otherwise

Figure 21: XCC match quality function (q)

Figure 22: The process of matching a fingerprint with radius r = 2 against an environ-
ment with a size s = 3. In this example the best match is found at p = 0.
Green shaded squares indicate a match for the represented pattern element.

The resolving algorithm presented here however does not produce optimal results
when operating on flat trees where one parent has many child-nodes. This is because in
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6. Architecture and Implementation

such situations, the initial guess taken by following the path of the operation through the
target trees hierarchy can result in a node which is too far away of the intended position.
The problem arises if a path points to a node which has many preceeding siblings. When
the target tree was modified since the operation was recorded and a node was inserted
as a preceeding sibling to the parent of the affected node, the operations path will point
to the newly inserted node. This position might then lie outside of the environment size
s due to the many siblings preceeding the actual target node.

6. Architecture and Implementation

6.1. Design Goals

We stated in the introduction that we want to provide a framework of algorithms and
tools which could serve as a starting point for a version control system tailored to struc-
tured documents. Also the architecture should be extendible such that additional file
formats like e.g. JSON and new algorithms can be integrated easily. The core algorithms
should also be reusable outside the project. Finally the code should run on different
browsers and even within other environments like servers or scriptable applications.

Our framework is divided into two layers. The high level interface provides conveniant
diff and patch commands and a set of factory classes. The diff and patch algorithms as
well as methods for loading and saving data are implemented in a set of loosely coupled
classes forming a solid foundation.

6.2. Achieving Reusable Code Units in JavaScript

The inheritance model provided by JavaScript out of the box does not encourage deep
class hierarchies. Reusability of code and separation of concerns is easier to achive using
Object Composition in this language. This approach simplifies the integration of new
algorithms and file formats into the framework. It also makes it easy to strip away
unneded functionality and minify the code base which is especially important for web
applications.

In order to relieve clients of the framework from having to instantiate and associate
many collaborating objects, we employ a set of factory classes modelled after the Abstract
Factory pattern as described in the GoF [12]. The factories are discussed in greater detail
in the following section.

Further we will encounter the Diff and Patch classes. While those classes are not
strictly modelled after the Command pattern, they nevertheless incorporate the key idea.
Upon instantiation the objects are parameterized using the factory classes we discussed
above. Execution of the command is triggered by a single public method. However in
order to conform to the original pattern, the diff and patch methods would need to
have the same signature, which is not the case in the current implementation. Also not
only the factory objects but all of the parameters including input and output documents
would have to be properties of the commands and not parameters of the public execute-
method.
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In order to support different versions of tree matching (diff) and resolver (patch)
algorithms, we are using the Strategy pattern. The factory classes are responsible for
selection of the appropriate strategy, i.e. instantiation of the proper algorithm class.

Another GoF pattern we rely on is the Adapter pattern. In order to decouple the diffing
and patching algorithms from the document structure (e.g. the DOM document), we
introduced a very simple tree-implementation which only provides the functionality we
need. We use a set of adapter classes which reproduce our own tree structures from the
original document trees, such that the algorithms can interface with the trees without
knowledge of the original source.

While not really a design pattern we want to present another important concept
commonly used in JavaScript applications. Due to the fact that the language has first-
class functions and because objects internally are nothing else than hash tables, it is
possible to create and assign new functions to objects at runtime. This technique is
commonly referred to as Object Augmentation.

We use this technique for example in the LCS implementation. The equality-method is
a member of the LCS class. Client code may replace that method on individual instances
to provide an equality-method which is adapted to the items the input sequences contain.
This allows us to select different equality-methods depending on the input document
format. E.g. we may want to compare XML nodes based on their hash values while for
other types of trees we stick with the node value. Of course selection of the equality-
method is the responsibility of the corresponding factory class.

6.3. High Level Interface

We provide four kinds of factory classes to support the instantiation of the objects
required by the diff and patch commands. Two of them simplify the access to the
lower-level diff and patch algorithms (DiffFactory and ResolveFactory), the other
two support the handling of different file formats for document files and patch files
(DocumentFactory and DeltaFactory respectively). Figure 23 depicts the currently
implemented factory interfaces and classes whereas Figure 24 show the relations of the
command classes to the factory classes.

Data is kept within the two data object classes Document and DeltaDocument during
processing (see Figure 25). Client code should treat them as opaque types. The corre-
sponding factory classes are responsible for their construction as well as for serialization.
The string property type specifies the document format of the underlying document
(xml or json). A reference to the native document structure is kept in the data prop-
erty. When dealing with XML documents, data points to an instance of DOMDocument,
i.e. the in-memory representation of the file. The string representation of the document
is kept in the src property.

Our algorithms do not operate directly on the underlying document structure. More-
over we maintain our own tree structure which is adapted from the underlying document
when a file is loaded. The root of our tree is assigned to the tree property of a Document.
File format specific navigation and retrieval of node values is implemented in a flexible
manner by providing the slots valueindex, treevalueindex and nodeindex on the
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6. Architecture and Implementation

Figure 23: The four factory interfaces along with the implementations provided by
the current version of the framework. Note that JavaScript does not sup-
port any kind of interface-types. Therefore the interfaces DiffFactory,
ResolveFactory, DocumentFactory and DeltaFactory do not really exist
in our implementation. Nevertheless we show them here in order to point out
that the classes inheriting from those interfaces are interchangeable.

Figure 24: The Diff and Patch command classes both consume three factory ob-
jects upon instantiation. The only factory class that they do not share is
DiffFactory and ResolveFactory, wrapping around the diff and patch al-
gorithms.
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Document object. For example a document constructed by the DocumentXMLFactory

installs objects which compute and return hash values for nodes and subtrees into those
slots.

The additional properties of the DeltaDocument class are a matching, which is essen-
tially the result of the diffing process, and two different lists of operations. Detached

operations represent the contents read from a patch file including head and tail context.
The operations contained in the attached list represent the changes which were suc-
cessfully resolved in the target document tree. The attached list is also populated after
collecting all the changes from the matching as a result of a diff command.

Figure 25: The Diff and Patch command as well as the four factory classes mainly
operate on the Document and DeltaDocument objects.

6.4. Foundation

Figure 26 gives an overview of the packages and classes forming the foundation of the
framework. In this section we briefly cover the most important ones and point out their
interactions.

Remember that JavaScript does not provide any means to declare interfaces for classes.
Nevertheless we show some interfaces in the class diagrams in order to emphasize that
those classes inheriting from them are interchangeable.

The complete API reference is included on the CD and in the project SVN repository
as set of HTML files. They are located under the directory apiref. The file index.html
is a good starting point. The reference documentation was generated from the source
code of the framework using Sphinx, the Python Documentation Generator15 and JSDoc

15Sphinx, the Python Documentation Generator
http://sphinx.pocoo.org/
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6. Architecture and Implementation

Figure 26: The building blocks of the framework foundation. Note that this package
diagram is not complete but it covers the most important part and shows
the relations between the packages. In order to reduce complexity, most
compartements are collapsed. Many of the classes were already mentioned in
Figures 23, 24 and 25.
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Toolkit Version 216.

6.4.1. The tree and domtree Packages

The classes Node and Anchor form the heart of the tree package. The former is used
to build up a tree structure which abstracts the underlying document. The class is
kept as simple as possible. Multiple nodes are structured into a hierachy by way of the
parent-child relationship. The tree structure is not meant to be altered after it was built
using a TreeAdapter. A reference to the data representing a tree node in the underlying
document can be kept in the corresponding property. The equality test of the diff-
algorithms default to comparing the value property of two nodes. For XML documents
the test method is overriden with a specialized function involving comparison of hash
values though.

Figure 27: Classes of the tree package.

By means of the Anchor class it is possible to specify any position in the tree. The
target references the node the anchor is pointing at. The base represents the targets
parent node and the index its offset in the children list of the base. The target may
be undefined. This is the case when the anchor points beyond the end of the children
list. Also the base may be undefined when the target points at the root node.

The TreeHashIndex and NodeHashIndex provide access to hash values of single nodes
and their subtrees. These classes augment node objects with a property where computed
hash values are cached in order to conserver some processor cycles.

Accessing tree nodes relative to a reference node at a given offset in document order
can be accomplished with an instance of DocumentOrderIndex. This class is mainly
used when computing or resolving the values of context nodes relative to an operation.

16JSDoc Toolkit:
http://code.google.com/p/jsdoc-toolkit/
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6. Architecture and Implementation

The Matching class provides a convenient interface for pairing nodes from two trees.
The result of running one of the tree-diff algorithm is essentially an instance of this class.

By means of the DOMTreeAdapter class from the domtree package it is possible to
construct a tree structure using the foundations Node class from an object implementing
the W3C DOM interface, i.e. a DOMDocument. Objects of this type can be optained
by parsing an XML string using a DOM parser or by accessing the window.document

property from within a script running in a browser window.
The domtree package also provides the DOMNodeHash class which implements a method

capable of calculating a hash value over an XML element. Namespaces and attributes are
normalized in order to prevent different hash values for elements with varied attribute
order or changed namespace prefix. The hashing-method and the normalization is im-
plemented in accordance to [16]. The only hashing algorithm available in the current
version is FNV1-32 [19].

6.4.2. The delta, contextdelta and domdelta Packages

The packages having the word delta in their name unsurprisingly provide the methods
to construct operations and to convert between different kinds of them. Note that we
will discuss some classes in pairs. Some of them are complementary but live in different
packages. Figure 28 shows the classes of the more generic delta package while Figure 29
depicts those of the contextdelta package.

Figure 28: Classes of the delta package.

Most important classes of these packages are the AttachedOperation as well as the
DetachedContextOperation. As already mentioned before, instances of the attached
variant are tied to a tree by means of an Anchor. In contrast detached operations provide
additional information which helps the resolver to locate their entry point in a tree. In
the case of the DetachedContextOperation values of leading and trailing context nodes
are recorded in addition to the standard attributes.

Conversion between attached and detached operations is done by means of the Attacher
and Detacher classes. The former is not much more than a wrapper around the selected
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Figure 29: Classes of the contextdelta package.

resolver algorithm. The latter depends on the characteristics of the target delta file. In
our case, the values of nodes surrounding the target of an operation need to be collected
and stored into the head and tail properties of a new DetachedContextOperation in-
stance. Typically nodeindex is an instance of DocumentOrderIndex and valueindex a
NodeHashIndex object (See previous section for detailed information on those classes).

Finally the domdelta package provides the DOMDeltaAdapter class capable of con-
verting a list of DetachedContextOperation instances into a DOM structure and vice
versa. For more details, refer to the API reference or the foundation overview depicted
in Figure 26.

6.4.3. Operation Handlers

We already mentioned in Section 6.4.1 that we avoid modifying the tree structure once
it was built up using a TreeAdapter. That means even during the patching process the
adapted structure remains unaltered. Instead the underlying document is changed di-
rectly whenever an operation is applied or reverted. For each operation type there must
be one handler class per supported document type. Currently only handlers capable of
operating on a DOM structure are available, namely DOMNodeReplaceOperationHandler

for node-update operations and DOMSubtreeOperationHandler for inserting and remov-
ing sequences of subtrees.

6.4.4. Classes Implementing Diff- and Patch Algorithms

The packages skelmatch, xcc and resolver contain classes implementing the corre-
sponding diff and patch algorithms. They are discussed in depth above in Section 4 and
Section 5.

6.5. Frontends

A set of frontends have been produced in order to demonstrate the capabilities of the
framework.
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6.5.1. Command Line Interface

The command line interface consists of the tools djdiff and djpatch. The former can
be used to detect the changes between two versions of a XML document and save them
into a patch file. The latter has the capability of applying a patch file to a document.
By means of a set of command line options, the behaviour of the tools can be adapted
to different needs. Figure 30 gives an overview.

Built in help for djdiff:

Usage: djdiff [options] FILE1 FILE2

Available options:

-h, --help Show this help

-p, --payload STRING Specify payload type (xml or json, default: detect)

-g, --algo STRING Specify algorithm (skelmatch or xcc, default: skelmatch)

-x, --xml Use XML patch format (default)

-j, --json Use JSON patch format

-d, --debug Log actions to console

Built in help for djpatch:

Usage: djdiff [options] FILE PATCH

Available options:

-h, --help Show this help

-p, --payload STRING Specify payload type (xml or json, default: detect)

-r, --radius NUMBER Search radius for fuzzy matching (default: 6)

-t, --threshold NUMBER Threshold value for fuzzy matching (default: 0.7)

-d, --debug Log actions to console

Usage example:

cd test/fixtures/

node ../../bin/djdiff.js -p xml zappa-quote-1.html zappa-quote-2.html > zappa-patch.xml

node ../../bin/djpatch.js -p xml zappa-quote-1.html zappa-patch.xml > zappa-quote-patched.html

Now zappa-quote-2.html and zappa-quote-patched.html will have the same content.

Figure 30: Command line options and usage example for djdiff and djpatch. Note that
support for JSON is very limited at the moment.

There is also the tool djhash which prints the hash values of each XML node encoun-
tered in a document to the console. This tool is helpful when one needs to manually
verify the head and tail context contained in a patch file. Figure 31 explains the output
of the djhash tool in greater detail.
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$ ./bin/djhash.js test/fixtures/logo-1.svg

svg 35642048 953b08a9

defs 60179796 5b38b0cd

sodipodi:namedview 33b20bf6 f206371d

metadata 9bcae695 b14ced8f

rdf:RDF c299b76e 6724a49b

cc:Work 89b99f02 3c8c20d7

dc:format 57b2f766 aca5381d

#text b11f2c1c e48f1925

dc:type 4116347a de39a86a

dc:title 54b5f69b 9caa22b5

g 6ed152c 9127d360

g 4770a978 a882df54

text 391e63db cbabd22b

tspan 78a84384 88be8a30

#text 1310d1e6 b19f6351

text 459f02a7 7a292e10

tspan 30b5c1ee c0ee219d

#text eb7a706b ee4102ad

Figure 31: Output of the djhash command when run against the logo-1.svg fixture. In
the left half the xml tree structure is displayed by means of the tag-names.
The two columns on the right side represent the node hash and the tree hash
values respectively.

6.5.2. LCS Demo

In order to understand the Longest Common Subsequence problem we implemented a
small JavaScript application capable of drawing the edit graph produced by different
input strings. Because of the visual feedback, the LCS demo also proved to be very
useful when we had to analyze bugs in our implementation. Additionally we could
use the application to generate figures for the documentation, e.g. the ones shown in
Figure 10.

We used the visualization framework Processing.js17 to produce the graphics. The
idea on how to visualize the algorithm was heavily inspired by Nicholas Butlers tutorial
“Investigating Myers’ diff algorithm”18.

6.5.3. Tree Matching Demo

Also for illustration purposes as well as for runtime examination of the algorithm we
provide a JavaScript application which visualizes the XCC tree matching algorithm and
the different variants we implemented. Like the LCS Demo, this application is based on
Processing.js for the graphics.

17Processing.js Visualization Framework
http://www.processing.js

18Nicholas Butler: Investigating Myers’ diff algorithm
http://www.nickbutler.net/Article/DiffTutorial1
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6.5.4. XML Source Diff Demo

The XML Source Diff Demo lets you choose two XML, HTML or SVG files, then it
shows the differencies between them by highlighting the relevant parts in the XML
source code. The syntax highlighting is done using Google Code Prettify19. We also
reused the style html function from JS Beautifier20.

6.5.5. XML Visual Merge Demo

As an optional objective we intended to explore possibilities to visualize changes to
documents by highlighting affected parts in the layout. E.g. by framing changed parts
of a website with red borders or by shading unaffected parts such that the changes will
stand out.

As a first step we implemented a JavaScript application capable of generating patch
files as well as selectively applying them to a document. During this interactive process,
the influence of certain changes can be monitored by keeping an eye on the built-in live
preview. The preview can handle all XML file formats which a browser can render,
thus also SVG images are fully supported. A screenshot of the application is shown in
Figure 32.

Figure 32: A screenshot of the XML Visual Merge demo. Individual changes can be
selected using the checkboxes displayed in the left column. The preview is
refreshed in real-time.

19Google Code Prettify Syntax Highlighter:
http://code.google.com/p/google-code-prettify/

20JS Beautifier:
https://github.com/einars/js-beautify

44

http://code.google.com/p/google-code-prettify/
https://github.com/einars/js-beautify


6. Architecture and Implementation

The user interface was built using the Dojo Toolkit21. This demo application also
shows how our framework can be used in conjunction with an AMD module loader22.

6.6. Tools

As a secondary objective we also wanted to identify tools which support development
of JavaScript based applications. In this section we present some we relied on heavily
during the development.

6.6.1. Testing and Test-Coverage

Unit-testing is even more important for projects written in a dynamic language like
JavaScript than it is for statically typed programs. There are numerous unit-testing
frameworks available for JavaScript, some tailored to the browser, other more useful on
the server side. We settled with nodeunit23 because it is capable of executing the tests
on the command line as well as in a browser.

The Makefile included with the source code provides targets for running the test-suite
server-side as well as in the browser. The command make test will execute all unit
tests from the command line. By invoking make browser, the framework as well as the
test-suite is aggregated into one file and stored within the directory dist/browser-test.
The test-suite now can be executed by opening the file dist/browser-test/test.html

from within a browser.
Note that some browsers enforce very restrictive security measures and may not allow

the test suite to load additional files from the file system24. For this case a little helper
script spawning a basic http server delivering static files from a directory is included
in the source tree. When invoked as specified below, all the files within the directory
dist/browser-test will be served using HTTP on TCP port 3000:

node scripts/http.js dist/browser-test

The test suite can then be run by entering the url http://localhost:3000/test.html
into the location bar of any browser.

Measuring test coverage is currently a bit tricky in JavaScript. Most tools instrument
the code, i.e. inject additional statements before each line of code in order to keep track
which lines were evaluated how often. When done sloppily, the instrumentation may
introduce bugs into the code.

21Dojo Toolkit
http://dojotoolkit.org/

22AMD: Asynchronous Module Definition API
https://github.com/amdjs/amdjs-api/wiki/AMD

23Nodeunit Test Framework:
https://github.com/caolan/nodeunit

24E.g. Google Chrome denies any file system access when a page was loaded from a url of the form
file:///path/to/some/file.html.
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The tool we use to analyze test coverage is JSCoverage25. At the moment our tests
reach around 90% of the framework code. A screenshot of the JSCoverage user interface
is shown in Figure 33.

Figure 33: The test coverage results for delta.js as reported by JSCoverage

6.6.2. Debugging and Profiling

Most modern browsers now provide quite comfortable developper tools out of the box.
Many of those tools exist for the server side as well (node.js), but they are far from being
easy to use let alone well integrated. When we needed to examine running code, we used
node-inspector26 is capable of connecting to a running node.js instance and serving the
debugging interface to a WebKit based browser27.

In order to analyze the contribution of individual methods to the overall runtime, the
v8 profiler comes in handy28. Recall the experiment we outlined Section 4.5 which shows
the contribution of the LCS-complexity to the overall skel-match runtime. When run
with the profiler enabled, we optain the output shown in Figure 34. The top 7 entries
accounting for 85.1% of the runtime clearly are part of the LCS module.

25JSCoverage:
http://siliconforks.com/jscoverage/

26https://github.com/dannycoates/node-inspector
27Browsers based on WebKit include Chromium, Google Chrome and Apples Safari
28http://code.google.com/p/v8/wiki/V8Profiler
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6.6.3. Static Analyzis

Because JavaScript is an interpreted language and therefore source code is not compiled
before it is executed, programming errors are only detected at runtime. Additionally
due to the fact that JavaScript interpreters are required to autonomously insert missing
semicolons at the end of lines, the syntax can sometimes become ambigous. In order to
mitigate the risk of introducing hard to find bugs, a program capable of analyzing the
source code and flagging potential problems is very helpful.

We regularely check our code with JSLint29. The tool is also available as a com-
mand line version30. This is especially attractive for integration into a build script or a
Makefile.

Statistical profiling result from v8.log, (40821 ticks, 36729 unaccounted, 0 excluded).

[...]

[JavaScript]:

ticks total nonlib name

21696 53.1% 53.2% Function: LCS.middleSnake lib/delta/lcs.js:293

9308 22.8% 22.8% Function: LCS.compute lib/delta/lcs.js:53

2281 5.6% 5.6% Function: LCS.nextSnakeHeadForward lib/delta/lcs.js:191

772 1.9% 1.9% Function: LCS.forEachCommonSymbol lib/delta/lcs.js:169

666 1.6% 1.6% Function: Diff.matchContent.lcsinst.forEachCommonSymbol.a

lib/delta/skelmatch.js:224

464 1.1% 1.1% Function: LCS.nextSnakeHeadBackward lib/delta/lcs.js:242

263 0.6% 0.6% Function: KPoint.translate lib/delta/lcs.js:411

186 0.5% 0.5% Function: Diff.equalContent lib/delta/skelmatch.js:115

[...]

3 0.0% 0.0% Function: <anonymous> lib/delta/tree.js:55

[...]

2 0.0% 0.0% Function: Diff.collectBones lib/delta/skelmatch.js:264

[...]

1 0.0% 0.0% Function: Diff.matchStructure.forEachUnmatchedSequenceOfSiblings

.lcsinst.forEachCommonSymbol.a lib/delta/skelmatch.js:376

1 0.0% 0.0% Function: Diff.matchStructure.forEachUnmatchedSequenceOfSiblings

.lcsinst.forEachCommonSymbol.a lib/delta/skelmatch.js:373

1 0.0% 0.0% Function: Diff.matchStructure lib/delta/skelmatch.js:360

[...]

Figure 34: Profiling information as reported by v8 profiler. The top 7 entries accounting
for 85.1% of the runtime clearly are part of the LCS module. Some lines
which were deleted from the output are marked using [. . . ].

29JSLint, The JavaScript Code Quality Tool:
http://www.jslint.com/

30JSLint command line version:
https://github.com/reid/node-jslint
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6.7. JavaScript Pecularities

In this section we will point out some specialities of the JavaScript language and we
point out the measures we took to cope with them in our code base.

6.7.1. Modularization: CommonJS vs AMD Module Format

JavaScript currently does not provide a standard way to load additional code from
external ressources. Also there is no support for isolation of components from each
other. Numerous approaches exist which simplify code reuse and try to work around
this limitation with more or less success.

In order to prevent polution of the global namespace it is generally recommended that
JavaScript code is enclosed into a immediately executed anonymous function. Using
this method it is possible to only selectively export symbols which should be available
to client code. All advanced modularization methods and loaders are built around this
basic pattern. An example of the module pattern is shown in Figure 35.

1 var GLOBALOBJECT ={};

2
3 (function(exports) {

4 var answer = 42;

5
6 function getanswer () {

7 return answer;

8 }

9
10 function tellme () {

11 console.log(getanswer ());

12 }

13
14 exports.tellme = tellme;

15 }( GLOBALOBJECT));

16
17 GLOBALOBJECT.tellme ();

Figure 35: The JavaScript module pattern. The symbols answer and getanswer are kept
within the anonymous closure starting at line 3. The function is immediately
executed after its definition on line number 15 with the GLOBALOBJECT as its
only parameter.

In addition to isolation, the two popular module formats CommonJS31 and AMD32

provide methods which allow the client to retrieve and execute additional code files. The
CommonJS specification is reasonable simple to use and is popular on the server-side.
Node.js provides functions capable of loading CommonJS modules.

31CommonJS module specification:
http://wiki.commonjs.org/wiki/Modules/1.0

32AMD: Asynchronous Module Definition
https://github.com/amdjs/amdjs-api/wiki/AMD
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However CommonJS has the drawback that the loader is executed synchronously.
This does not blend in well with the asynchronous nature of JavaScript, especially on
the browser platform. The JavaScript code of an application either is concatenated into
one single file before it is served to the browser, or an AMD loader is delivered to the
client which takes care of retrieving additional code modules. Lukily modules written
in the CommonJS module format are easily convertible into AMD style by means of the
r.js script available as a part of the require.js package33

6.7.2. Lack of Integer Data Type

JavaScript does not provide a data type for integer values. The specification34 requires
that the implementation of the Number primitive must be based on 64bit floating point
nubers. Although operations within the range of 32bit signed values is guaranteed to
produce results without rounding errors, bitwise operations may still produce unexpected
results35.

We had to work around this issue in our implementation of the FNV1-32 hashing
algorithm because JavaScript lacks proper integer support.

7. Discussion and Conclusion

7.1. Research Results and Prior Work

Before being able to choose a suitable algorithm as the base for our implementation, we
had to acquire quite a bit of knowledge in that domain. Especially important was to
work out the features which set the specialized diff algorithms for structured documents
appart from the generic tree to tree correction problem and subsequent refinements.
A part of this preliminary work has been completed within the context of the Project
Thesis 2 [23] during the preceeding semester.

Although our curriculum comprehends lectures on Algorithms and Datastructures as
well as Complexity and Computability, virtually all of the presented algorithms were new
to us. We mostly relied on scientific articles and also on free and open source code in
order to analyze the methods discussed in this work.

7.2. Fulfillment of Project Goals

The amount of work that was necessary to reach the goals we declared was roughly what
we expected. However we did not plan to depart from the original XCC implementation
in such an extent. While the development of the Skel-match variant did not endanger
the fulfillment of the mandatory targets, there was only little time left for the optional

33require.js Module Loader:
http://requirejs.org/

34The JavaScript language is defined by the ECMA-262 standard [1]. Currently the 5th edition is
supported by many platforms.

35Refer to the Complete JavaScript Number Reference for some interesting details:
http://www.hunlock.com/blogs/The_Complete_Javascript_Number_Reference
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ones. The web application presented in Section 6.5.5 partially covers the requirements
defined by the first two optional goals (See ??). The third optional goal was dropped
completely.

On the other hand we are very happy with our implementation. We delivered a
modular and extendible framework with an architecture which takes into account the
peculiarities of JavaScript as well as common practice on coping with them. Our code
base is compatible with competing module formats. The vast majority can be shared
between different platforms, i.e. server software and the browser. There are automated
unit tests in place for every algorithm and most of the supporting code and the project is
organized such that the test coverage can be verified easily. The command line interface
and the demo web applications demonstrate a broad range of options on how to interface
with our framework.

We took a bit of a risk implementing this project in JavaScript, a language that we
barely knew before. Because many web ressources and books on JavaScript are targeted
at programming novices, we first had to identify trustworthy sources in order to quickly
get up to speed with the language. The book “Pro JavaScript Techniques” by John
Resig36 and the screen cast series “Crockford on JavaScript” by Douglas Crockford37

were extremely helpful for that matter.

7.3. Future Work

The design of our framework encourages the addition of new file formats, patch formats
and diff-/patch algorithms. From an academic point of view it would be interesting to
implement more of the algorithms we discussed (e.g. BULD, Section 2.5.3) and compare
them performance-wise. However one might consider reimplementing the framework in a
programming language which behaves less uncertain than JavaScript in order to produce
meaningful results.

Recalling that the runtime of the presented diff algorithm highly depends on the
complexity of the LCS, further investigations in that direction could lead to improved
performance. It has been shown that Myers LCS algorithm can be refined such that the
runtime is cut by a factor of 2 [25]. While swapping the LCS algorithm will not have
any inpact on worst case complexity, we can expect a better overall runtime from faster
LCS implementations.

In some situations the approach taken to resolve operations in the target tree fails due
to a bad initial guess (See: Section 5.2). Because the context fingerprints are arranged
in document order, an algorithm based on the document order instead of the document
hierarchy even for the first guess should produce better results.

36John Resig, Pro JavaScript Techniques, ISBN 1590597273, Apress 2006, http://jspro.org
37Douglas Crockford, Crockford on JavaScript, http://yuiblog.com/crockford/
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A. Project Setup and Build Instructions

A. Project Setup and Build Instructions

A.1. Build Instructions for node.js

Delta.js runs within modern web browsers as well as under node.js. In order to use it as
a module for node.js based projects, just drop this directory into an appropriate module
path. For example the node modules folder of your project.

The delta.js source directory is organized as an npm package. Invoking the com-
mand npm install will download any dependencies and install them into the directory
node modules.

It is recommended to verify the installation by running the automated test suite once
by invoking make test.

A.2. Building AMD modules

In order to build a version suitable for AMD module loaders like dojo or require.js,
invoke make amd. The built modules are put into the directory dist/amd.

A.3. Building Single File Browser Version

A single-file browser version of the framework can be built using the command make

browser. The result is placed into dist/browser/delta.js. Note that this version is
not compatible with AMD modules.

A.4. Running the Command Line Tools

The command line utilities are located in the bin directory. They may be invoked
directly without a prior build. There are some sample XML files in test/fixtures

which are useful to quickly test the command line interfaces.
Follow this example in order to produce a patch by diffing two versions of an XML

file as well as apply it afterwards back to the original version.

1 ./bin/djdiff.js -p xml ./test/fixtures/logo -1. svg \

2 ./test/fixtures/logo -2. svg > /tmp/logo -diff.xml

3 ./bin/djpatch.js -p xml ./test/fixtures/logo -1. svg \

4 /tmp/logo -diff.xml > /tmp/logo -1-patched.svg

The file /tmp/logo-diff.xml will contain the changes between logo-1.svg and
logo-2.svg while the file /tmp/logo-1-patched.svg will contain the same contents
as logo-2.svg.

A.5. Running the Browser Based Examples

In order to build the examples, invoke make examples. Run node scripts/http.js

examples/lcs in order to start a local webserver for the LCS example. Then point your
browser at http://localhost:3000 in order to access the LCS web application.

The following examples are available:
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example/lcs: A visualization of Myers Longest Common Subsequence algorithm.

example/xcc: A web application allowing to step through the XCC tree matching algo-
rithm.

example/srcdiff: Given two versions of an XML file, this web application will highlight
the differencies on the XML source code.

example/vizmerge/src: A web application allowing diffing and selectively merging of
changes in XML documents. This demo application also features a live preview
where the effects of a change are shown in realtime.

A.6. Bulding the API Reference

In order to build the API reference, the Python Documentation Generatior Sphinx
and the jsdoc toolkit version 2 is required. After invoking make doc, the directory
doc/ build/html contains the built documentation in HTML format.

B. Project Management

B.1. Methodology

While not sticking strictly to an agile methodology/framework like Scrum or XP the
core principles of agile project management are taken into account while developing this
project. Risk and exploration factor are high and therefore change of coverage and even
objectives should not be precluded until late in the project.

Meetings with the supervisor are held frequently on a mostly weekly basis where
current and future work is discussed.

B.2. Project Livecycle

Agile methodologies are frequently divided into four to five phases (“Envision”, “Specu-
late”, “Explore”, “Adapt”, “Close”) [13]. Applied to the livecycle of this project thesis
the first phase comprises the project proposal (before the start of the semester). The
second phase comprises the first couple of weeks where identifying and resolving the
difficult problems is important, the third phase mostly consists of writing activity while
the last one is used to close up the project.

B.3. Risk Management and Planning

One of the most important aspect of agile software development methodologies is that
they encourage continuous reduction of risks. Instead of trying to work out a detailed
model of the system up front, important features are added to the system as the project
advances.

Features which supposedly are afflicted with greater risk, either because their im-
plementation is expected to be complicated or because additional knowledge has to be
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acquired in order to tackle them, should be done as early as possible. We always adhere
to this principle when planning the next steps in the project. Refer to the gantt chart
shown in Section B.5 for an overview of the project plan.

B.4. Tools

No specialized tools are used in order to schedule and prioritize tasks. Reading notes,
progress reports, meeting minutes and also tasks which either are marked with [open]
and [done] are recorded in a simple textfile (journal.txt). Using a text editor which is
able to highlight lines matching a given pattern (like vim), it is very easy to keep the
overview of open tasks.
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B.5. Chart
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documents. In Proceedings of the International Conference on Data Engineering -
ICDE 2002, pages 41–52, February 2002. doi:10.1109/ICDE.2002.994696. 11

[10] Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. An optimal
decomposition algorithm for tree edit distance. ACM Transactions on Algorithms,
6(1):1–19, December 2009. doi:10.1145/1644015.1644017. 9

[11] Serge Dulucq and Hélène Touzet. Analysis of tree edit distance algorithms. In
Combinatorial Pattern Matching, volume 2676, page 83–95, 2003. doi:10.1007/

3-540-44888-8_7. 9

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1995.
34

[13] James Highsmith. Agile project management : creating innovative products.
Addison-Wesley, Upper Saddle River NJ, 2nd ed. edition, 2010. 52

[14] Philip N. Klein. Computing the edit-distance between unrooted ordered trees. Al-
gorithms - ESA’98, page 1–1, 1998. doi:10.1007/3-540-68530-8_8. 8

[15] Tancred Lindholm, Jaakko Kangasharju, and Sasu Tarkoma. Fast and simple XML
tree differencing by sequence alignment. In Proceedings of the 2006 ACM symposium
on Document engineering, page 75–84, 2006. doi:10.1145/1166160.1166183. 11

58

http://dx.doi.org/10.1016/j.tcs.2004.12.030
http://www.cs.umaine.edu/~chaw/pubs/xdiff.pdf
http://www.cs.umaine.edu/~chaw/pubs/xdiff.pdf
http://www.cs.umaine.edu/~chaw/pubs/cm.pdf
http://www.cs.umaine.edu/~chaw/pubs/cm.pdf
http://dx.doi.org/10.1145/233269.233366
http://dx.doi.org/10.1145/233269.233366
ftp://tfalati.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-221.pdf
ftp://tfalati.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-221.pdf
http://dx.doi.org/10.1109/ICDE.2002.994696
http://dx.doi.org/10.1145/1644015.1644017
http://dx.doi.org/10.1007/3-540-44888-8_7
http://dx.doi.org/10.1007/3-540-44888-8_7
http://dx.doi.org/10.1007/3-540-68530-8_8
http://dx.doi.org/10.1145/1166160.1166183


E. References

[16] H. Maruyama, K. Tamura, and N. Uramato. Digest values for DOM (DOMHASH),
April 2000. Available from: http://tools.ietf.org/html/rfc2803. 40

[17] Webb Miller and Eugene W. Myers. A file comparison program. Software:
Practice and Experience, 15(11):1025–1040, November 1985. doi:10.1002/spe.

4380151102. 3

[18] Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1(1-4):251–266, November 1986. doi:10.1007/BF01840446. 3, 5, 9, 13, 18

[19] Landon Curt Noll. FNV hash. Available from: http://isthe.com/chongo/tech/
comp/fnv/. 40
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