
Project Thesis 2 — Module 7302 — BUAS-EIT

Difference Algorithms and Merging
Strategies for Structured Documents

Lorenz Schori <schol2@bfh.ch>

June 17, 2011

Supervisor: Prof. Dr. Olivier Bieberstein

Abstract

When dealing with long texts such as source code, articles or even books one often
wants to track changes introduced by different authors. That’s why we find efficient dif-
ference algorithms and merging strategies in many source code management and content
management systems which produce good results when applied to flat text files.

This project aims at studying ”diffing” and ”merging” techniques for structured docu-
ments. The term ”diffing” refers to the process of comparing two documents, structured
or not, by differential analysis. The focus of this work lies on algorithms applicable to
XML documents.

Contents

Contents

1. Introduction 1
1.1. Motivation and Goals . 1

2. Comparing and merging flat text files 1
2.1. Fundamentals . 1

2.1.1. Simple model for string sequences 1
2.1.2. Conforming edit script . 2
2.1.3. Longest common subsequence vs. shortest edit script 2

2.2. GNU Diffutils . 2
2.2.1. Edit scripts . 3
2.2.2. Patch format . 4
2.2.3. Invertibility . 4
2.2.4. Commutativity . 5
2.2.5. Recap . 5

3. The tree to tree correction problem 5
3.1. Towards diffing structured data . 5

3.1.1. Tree model . 6
3.1.2. Requirements for patch format . 7
3.1.3. Tree operations . 7

3.2. The generic tree to tree correction problem 7
3.2.1. Tai (1979) . 7
3.2.2. Zhang and Shasha (1989) . 9
3.2.3. Klein (1998) . 10
3.2.4. DMRW (2009) . 10
3.2.5. Recap . 10

3.3. Unit cost algorithms . 11
3.3.1. mmdiff and xmdiff (1999) . 11

3.4. Diff algorithms for structured hierarchical data 11
3.4.1. Extended Zhang Sasha (1995) . 11
3.4.2. FastMatch EditScript - FMES (1996) 11
3.4.3. BULD (2001) . 12
3.4.4. faxma (2006) . 13
3.4.5. XCC (2010) . 13
3.4.6. A note on the move operation . 14
3.4.7. Recap . 14

4. Representing changes in tree structures 14
4.1. Visualization of changes . 14

4.1.1. Delta tree . 15
4.1.2. DeltaXML v2 and XMLR . 15

iii

Contents

4.2. Edit script and patch formats . 17
4.2.1. RFC 5261 - XML Patch Operations Framework 17
4.2.2. XCC patch format . 19

5. Conclusion and Future Work 21
5.1. Results . 21

5.1.1. Research on diff algorithms . 21
5.1.2. Research on patch formats and merging strategies 21

5.2. Future Work . 22
5.2.1. Dynamic diff granularity . 22
5.2.2. Merge capable delta tree style patch format 22
5.2.3. Diffing graphs along a spanning tree 22

A. Reflection 24

B. Project Management 24
B.1. Methodology . 24
B.2. Project Livecycle . 24
B.3. Tools . 24
B.4. Chart . 25

C. List of Figures 26

D. Listings 26

E. References 26

iv

1. Introduction

1. Introduction

1.1. Motivation and Goals

The goal of the present project thesis is to identify algorithms and implementations
capable of calculating and serializing differences between structured documents as well
as algorithms and implementations capable of applying these to the original document
or slightly modified versions thereof.

In order to find the best representation of changes between structured documents,
we first need to understand the desired characteristics in terms of space efficiency and
application robustness of the serialized forms, named “patches” in this context. We
explain this aspects by looking at some patch formats produced by the GNU diffutils.
Then we apply the concepts revealed by this analysis to existing patch formats for XML
documents, especially DeltaV2 [9], RFC 5261 [23], DUL [17] and XCC [21].

Further we discuss important diff algorithms and compare them in terms of time and
space complexity.

2. Comparing and merging flat text files

2.1. Fundamentals

In order to describe and compare the different approaches taken in the analyzed patch
formats we need to define some terms and expressions. We present a very simple model
here and introduce more aspects as we get deeper into the matter.

2.1.1. Simple model for string sequences

The difference between two documents is commonly represented as a list of operations
that will convert the first document into the second [16]. A good diff-algorithm will
try to minimize the number of operations required in order to produce a space efficient
representation of the changes between two documents. The number of edit commands
is commonly referred to as the edit distance.

Most of the time we’re interested in the actual changes instead of just a bare number
showing how much a document differs from another. The edit script represents this list
of operations introduced above.

Definition 1 Edit Script

edit script: sequence of operations required to convert one document into another.

anchor: data unit used by the patching algorithm to identify a location where an oper-
ation must be applied.

Sometimes we need even more information in order to allow automatic verification of
the applicability of a given edit script to a target document. We refer to those more
sophisticated type of change representation as a patch.

1

2. Comparing and merging flat text files

Definition 2 Patch

patch: an edit script with context.

context: nodes and literals that all compared documents have in common in the neigh-
borhood of where edit script operations will be applied.

full context patch: a patch containing the intersection of all compared documents in
addition to the edit script.

At the very minimum two operations are required to express the conversion from one
document into another: insert and delete.

Definition 3 Operation

insert (anchor, value[, context])

delete (anchor[, oldvalue, context])

Other than in patches operations in edit scripts do not include context information.

2.1.2. Conforming edit script

Usually it is not enough to just compute any edit script, instead one wants to find a
particular solution conforming to a given criterion. This requirement is easy to fulfill by
introducing a cost-function for operations such that we can find a conforming edit script
by calculating the total cost of each candidate and selecting the one with minimal cost.

2.1.3. Longest common subsequence vs. shortest edit script

Given a constant cost function (cost : op→ 1) a minimal conforming edit script between
two sequences A and B is identical to the shortest edit script. Myers [18] has shown that
the computation of the shortest edit script is dual to the problem of finding the longest
common subsequence (LCS) of the two sequences A and B.

2.2. GNU Diffutils

The GNU diff command compares text files on a line-by-line basis. The underlying
algorithm [18] performs well for large text files with few differences. Therefore it is
widely used to track changes to files by source code management tools.

Because the GNU diff command provides a variety of output formats it is perfectly
suited to show some aspects of edit scripts and patches.

2

2. Comparing and merging flat text files

2.2.1. Edit scripts

Listing 1: Original Document

1 You must have a beer and an

2 airline. It helps if you have

3 some kind of a football team , or

4 hm, i can’t remember exactly ,

5 some atomic weapons , but at the

6 very least you need a beer.

7
8 Fredy Something

Listing 2: Modified Document

1 You can’t be a real country

2 unless you have a beer and an

3 airline. It helps if you have

4 some kind of a football team , or

5 some nuclear weapons , but at the

6 very least you need a beer.

7
8 Frank Zappa

Listing 3: Resulting Edit Script

1 8c

2 Frank Zappa

3 .

4 4,5c

5 some nuclear weapons , but at the

6 .

7 1c

8 You can’t be a real country

9 unless you have a beer and an

10 .

Line 1: Delete last line from original file

Lines 2-3: Insert line “Frank Zappa”

Line 4: Delete line 4 and 5

Line 5-6: Insert line “some nuclear weapons, but at
the”

Line 7: Delete line 1

Line 8-10 Insert beginning of quote

Given the input documents in Listing 1 and Listing 2 invoking diff with the -e option
will produce the edit script shown in Listing 3. We can easily identify the operations
executed by the patch utility when invoked with this script on the original file (explained
in Listing 3 in the right column).

This example also shows another important aspect of edit scripts: We need some
means to address the lines which should be deleted and also the location where new
ones must be inserted. In this simple edit script format line numbers are used for that
purpose.

It is easy to imagine what would happen if the edit script is applied to a slightly mod-
ified version of the original document, e.g. if someone saved that file with an additional
newline character at the beginning of the file (Listing 4). Nothing hinders us to apply
the edit script to the modified file but the result is disastrous (Listing 5):

Listing 4: Slightly modified original

1
2 You must have a beer and an

3 airline. It helps if you have

4 some kind of a football team , or

5 hm, i can’t remember exactly ,

6 some atomic weapons , but at the

7 very least you need a beer.

8
9 Fredy Something

Listing 5: Corrupt document

1 You can’t be a real country

2 unless you have a beer and an

3 You must have a beer and an

4 airline. It helps if you have

5 some nuclear weapons , but at the

6 some atomic weapons , but at the

7 very least you need a beer.

8 Frank Zappa

9 Fredy Something

3

2. Comparing and merging flat text files

2.2.2. Patch format

Context sensitive patch formats are used to prevent data corruption when edit scripts
are applied to files, which are not guaranteed to contain the exact original content. In
addition to the raw changes, context sensitive patches also provide information about
the surrounding lines where the operations should take place. This allows the patching
program to verify if a given change can be carried out on the specified address and to
look for alternative locations if this is not the case.

Using GNU diff we can produce context sensitive patches in the widely used unified
diff format using the -u switch (Listing 6). Groups of local changes are packed into so
called hunks.

Listing 6: Resulting Edit Script

1 --- /tmp/src.txt 2011 -03 -23 08:42:15.000000000 +0100

2 +++ /tmp/tgt.txt 2011 -03 -23 08:42:08.000000000 +0100

3 @@ -1,8 +1,8 @@

4 -You must have a beer and an

5 +You can’t be a real country

6 +unless you have a beer and an

7 airline. It helps if you have

8 some kind of a football team , or

9 -hm , i can’t remember exactly ,

10 -some atomic weapons , but at the

11 +some nuclear weapons , but at the

12 very least you need a beer.

13
14 -Fredy Something

15 +Frank Zappa

Line 1-2: Meta information on files

Lines 3: Introduce new hunk from line 1 to 8 in source file to line 1 to 8 in target file.

Line 4: Delete line 1. Note: The whole content of line 1 is given here as context information.

Line 5-6: Insert new lines

Line 7-8: Context lines

Line 9-10 Remove lines 4-5

Line 11: Insert line

Line 12-13 Context lines

Line 14-15 Replace last line

Note: the context information not only makes patching more robust, it also enhances
readability of the edit script considerably. However it also produces bigger patches.

2.2.3. Invertibility

A patch (P : A1 → A2) with context information produced by GNU diff contain-
ing the instructions to convert a given file A1 into a later version A2 can be reversed
(P−1 : A2 → A1) when applied with the patch utility using its -R option. However

4

3. The tree to tree correction problem

this is not possible with simple edit scripts because there is not enough information to
turn a delete- into an insert-operation.

Invertibility of patches is especially important in the domain of version control.

2.2.4. Commutativity

When applying two patches (P1 : A1 → A2, P2 : A2 → A3) to the file A1 resulting in
the file revision A3, P2 may be applied before P1 as long as context and operations of
the two patches do not overlap.

2.2.5. Recap

Summing up we recognize the following characteristics of GNU diff and its file formats
for representing changes:

� In the case of the edit script format, the anchor corresponds directly to the line
number.

� In the unified patch format context information is used as an auxiliary mechanism
to verify and resolve locations. Therefore in this case context is also part of the
anchor. This process is normally referred to as pattern matching.

� Patches with context produced by GNU diff are invertible and commutative.

3. The tree to tree correction problem

3.1. Towards diffing structured data

In the previous section we introduced the elements of edit scripts, notable anchors and
operations and the notion of context and patches. Also we showed how edit scripts
and patches work using the example of GNU diff. Because XML is a widespread and
accepted file format for all sorts of structured documents we concentrate on algorithms
and tools designed specifically for XML.

While it is possible to use GNU diff and patch on structured text documents like XML
files, the resulting patch files usually are far from ideal because of one of several reasons:

� Changes in whitespace like different indention with unchanged content may result
in big patches which only express modified formatting hiding the fact that the
actual content did not change at all.

� In database-style XML documents (think of a phone book) with many entries in
a row with the same structure, a diff-algorithm operating on a line-by-line basis
may pick up changes across record borders (see example below).

5

3. The tree to tree correction problem

Listing 7: Original XML Document

1 <phonebook >

2 <person >

3 <name >Jon Zorn </name >

4 </person >

5 <person >

6 <name >Freddie Mercury </name >

7 </person >

8 <person >

9 <name >Frank Zappa </name >

10 </person >

11 </phonebook >

Listing 8: Modified Version

1 <phonebook >

2 <person >

3 <name >Jon Zorn </name >

4 </person >

5 <person >

6 <name >Frank Zappa </name >

7 </person >

8 </phonebook >

Listing 9: Patch produced by GNU diff

1 <name >Jon Zorn </name >

2 </person >

3 <person >

4 - <name >Freddie Mercury </name >

5 - </person >

6 - <person >

7 <name >Frank Zappa </name >

8 </person >

9 </phonebook >

Note that although the end result is correct when
this patch is applied, the presented changes do not
reflect the meaning of the modification, namely
“delete Mercurys record”. Instead the patch com-
municates that Zappas record should be merged into
its predecessor while Freddies name should be re-
moved.

In order to understand the requirements for edit scripts and patch formats for struc-
tured documents, we need to identify their building blocks now and also extend our
definitions we gave above.

3.1.1. Tree model

An XML document can be regarded as a rooted, ordered, labeled tree.

Definition 4 XML Tree: A rooted, ordered, labeled tree T consists of a set of nodes
N , a finite alphabet Σ and a labelling function L : N → Σ, which assigns a label to
each node. R uniquely identifies the single root node and P denotes a function returning
exactly one node representing the parent of a given node. Node order is determined by
the ranking function r which returns the position of a node within its siblings. The value
function V may return user data for leave nodes. This definition closely follows the one
given by Bille [2].

T = (N,R, P : N → N,L : N → Σ,Σ, V : N → value, r : N → int)

Note that especially in graph theory node-labels normally are considered unique. In
contrast in the literature on tree comparison, node labels are not unique and therefore
may not be used for object identification.

Also note that some applications like databases may ignore node order completely
while for other applications like word processors the order is an important aspect of the
document and must be taken into account when comparing two files. When not specified
explicitly node order is important in the following discussion of algorithms.

6

3. The tree to tree correction problem

3.1.2. Requirements for patch format

Let’s revisit our definition of edit scripts and patches and extend them now in order to
match the new requirements of hierarchical structured documents.

� Edit script: Anchors must be extended such that we can specify paths relative to
a reference node. For practical reasons most of the time the reference will be the
root node.

� Patch: Context must be expressible in terms of nearby nodes, namely ancestors,
siblings, descendants.

3.1.3. Tree operations

When operating on sequences of characters or lines it is sufficient to define two operations
in order to construct an edit script, namely insert and delete. In order to express edit
scripts in tree structures with the properties we defined above, we introduce one more
operation: relabel. Several algorithms extend this basic set with methods operating on
whole subtrees. Figure 1 depicts some operations on trees.

Definition 5 Basic tree operation

insert (anchor, node[, context])
The anchor points at a consecutive sequence of siblings S with a common parent
P . Remove node S from P and insert the new node N at the place where S was
before. Append S as the list of child nodes to N . After the operation P is the new
parent of N and N is the new parent of S.

delete (anchor[, oldnode, context])
Let P be the parent of the anchor A pointing to the node N being deleted. Remove
N from P and insert all of N child nodes where N was before.

relabel (anchor, newlabel[, oldlabel, context])
Replace the label of the node the anchor is pointing at with a new label.

We already mentioned before (3) that context information is a property of our defi-
nition of a patch. For invertible patch formats additional efforts are required in order
to allow conversion from insert to delete operations and vice versa. Especially the exact
scope of the anchor is challenging.

Before giving examples of edit scripts and patch formats, we take a look at the problem
of finding the differences between two trees in the next section.

3.2. The generic tree to tree correction problem

3.2.1. Tai (1979)

In 1979 Tai expressed the tree-to-tree correction problem [22] as a generalisation of the
edit distance on sequences. His algorithm has no practical relevance anymore today but
it still serves as the basis of adapted and improved algorithms.

7

3. The tree to tree correction problem

A

B F E

C D

A

B F E

C D

A

B G E

C D

A

B C D E

insert

delete

relabel

A

B C

A

B D C

E F

insert tree

delete tree

Figure 1: Tree edit operations. “Insert”, “delete” and “relabel” operate on node level
while “insert tree” and “delete tree” extend to whole subtrees

8

3. The tree to tree correction problem

Maximum complexity of Tais algorithm in time as well as in space is O(|T1||T2|D2
1D

2
2)

where |Tn| denotes the number of nodes and Dn the maximal depth of a tree. The
worst case where no two nodes from T1 and T2 have the same label and both trees have
maximal depth therefore results in an upper bound of O(|T1|2|T2|2) in time and space. If
both trees have a similar number of nodes n then we finally get worst case upper bound
in time and space complexity of O(n4).

3.2.2. Zhang and Shasha (1989)

Zhang and Sasha published a new algorithm in 1989 improving on runtime and space
requirements [24]. Key difference to Tais algorithm is the postorder traversal of the
trees. In Tais algorithm the comparison of two trees starts on the root node then each
of its child nodes is visited recursively until the right most leave node of both trees is
reached. In contrast Zhang and Shasha algorithm starts with the leftmost leave of both
trees working its way through its siblings then going through parents siblings until finally
reaching the root node (see Figure 2).

Interestingly enough this algorithm actually operates on ordered forests1 and therefore
solves an even more generic problem than Tais algorithm.

In order to separate tree distance and forest distance calculations, Zhang and Sasha
introduced so called keyroots, i.e. nodes having a sibling on their left and the root node.
During edit distance calculations, an array of the forest distance between two keyroots
is maintained(see Figure 2).

A

B C D

E F H I

G K L

Figure 2: Zhang Sasha: postorder tree traversal (red line) and keyroots (green shaded
nodes).

Upper bound in complexity of this algorithm is O(|T1||T2|min(L1, D1)min(L2, D2)) in
time and (|T1||T2|) in space. Again |Tn| denotes number of nodes Dn tree depth and Ln

number of leaves. Worst case input for this algorithm is a completely one-sided tree with
n nodes where n

2 are leaves and with a depth of n
2 + 1 as shown in Figure 3. Considering

two trees having the same size n, worst case time complexity becomes O(n4) while worst
case space complexity remains O(n2).

1Ordered forest: sequence of ordered trees

9

3. The tree to tree correction problem

1

2 3

4 5

6 n-1

n

Figure 3: Worst case input tree for Zhang Sasha algorithm

3.2.3. Klein (1998)

A refinement on Zhang and Sashas algorithm was proposed by Klein [13] in 1998. The
decomposition of trees into “heavy paths” yields another improvement on maximum
time complexity. However Zhang and Shashas algorithm still outperforms Kleins on
many input sets. On the other hand Kleins algorithm also is suited for edit distance
computation between unrooted trees, i.e. trees without a designated root node.

Kleins algorithm runs with O(|T1|2|T2|log|T2|) in time and with (|T1||T2|) in space.
For two similar sized trees with n nodes, the complexity therefore becomes O(n3 log n)
in time and O(n2) in space.

3.2.4. DMRW (2009)

In 2003 Dulucq and Touzet showed that Zhang Shasha as well as Klein algorithm can
be described within a more general framework [11]. They introduced the notion of
decomposition strategy as the discriminator between those algorithms. Based on that
work Demaine, Mozes, Rossman and Weimann improved the Klein-algorithm in 2009
and achieved the new worst case time complexity of O(n3) [10].

3.2.5. Recap

In this section we pictured the milestones in the development of tree edit distance al-
gorithms aimed at solving the generic tree to tree correction problem by finding the
minimal conforming tree edit distance. In scientific domains, e.g. when working out
the differences between RNA secondary structures, cubic worst case runtime may be
acceptable. When comparing structured documents however it might be interesting to
trade minimality of the edit script for better runtime performance.

Though the complexity bounds are important factors when comparing algorithms
many algorithms perform better in most situations. For example the Zhang Shasha

10

3. The tree to tree correction problem

algorithm is superior to Klein for certain inputs despite a worse upper bound in runtime
for worst case input. Several sources mention that Zhang Sasha runs in O(n2 log2 n) on
balanced trees.

3.3. Unit cost algorithms

3.3.1. mmdiff and xmdiff (1999)

Recalling the duality of shortest edit script and longest common subsequence (See 2.1.3)
it is possible to design more efficient edit distance algorithms by constraining the cost-
function of operations to a constant (unit) value. Chawathe [3] presented two algorithms
using the same technique for computing the tree edit distance like the one introduced
by Myers [18] for sequences.

While mmdiff is designed to run in main memory, xmdiff is able to handle arbitrary
big documents. For mmdiff upper limits in time and space is O(|T1||T2|), boiling down
to O(n2) for similar sized trees. While having constant upper limits in memory usage,
the xmdiff algorithm introduces quadratic IO costs.

3.4. Diff algorithms for structured hierarchical data

3.4.1. Extended Zhang Sasha (1995)

The changes introduced by people when editing documents are normally more complex
than the three basic operations insert, delete, relabel defined previously (see Definition 5).
Therefore an edit script comprising only of basic operations may mask the actual meaning
of the changes found between two document versions. In 1995 Barnard, Clarke and
Duncan proposed an extended version of Zhang Sasha algorithm [1] in order enhance
the expressivity of an edit script in the domain of document comparison.

Extended Zhang Shasha introduces three additional operations performed on whole
subtrees: insertTree, deleteTree, swap. Swapping is only allowed on adjacent siblings.

While this algorithm improves on edit script semantics and generally produces smaller
deltas with less operations compared to the original Zhang Sasha algorithm, it does not
help narrowing complexity bounds and memory requirements. However like the original
this algorithm produces minimal conforming edit scripts.

3.4.2. FastMatch EditScript - FMES (1996)

FMES was presented by Chawathe, Rajaraman, Garcia-Molina and Widom in 1996 [5]
as a complementary algorithm to Zhang Sasha tailored for generating edit scripts in
structured documents. The set of operations is however rather different to the one
of Zhang Shasha. In FMES insert and delete operations are restricted to leaf nodes,
relabel is substituted by an update operation targeting node values instead of node labels.
Additionally a move operation is introduced capable of changing the parent of a given
subtree and also its position within its siblings.

A key property of this algorithm is the separation of change detection into two sub-
problems:

11

3. The tree to tree correction problem

1. Find a good matching between two trees

2. Compute the edit script

If object identifiers are present in the data the solution to the first problem is trivial and
leads to a speedup of the whole process. The algorithm is capable of assigning object
identifiers if necessary based on node labels and values. For interior nodes the matching
criterion is based on their child nodes.

The matching algorithm is based on a set of criteria and assumptions appropriate for
structured data in the domain of document processing resulting in faster runtime at the
expense of potentially non-minimal edit scripts:

Criterion 1: Leaf nodes can be matched only if their labels are equal and their values
are similar enough.

Criterion 2: Internal nodes can be matched only if a certain percentage of their leaves
match.

Assumption 1: Labels follow a structuring schema where certain labels only are allowed
as child nodes of others.

Assumption 2: Every node in one tree only has at most one node in the other tree
resembling it closely.

Upper bound in time complexity for this algorithm is O((L(T1) +L(T2))e+ e2) where
L(Tn) represents the number of leave nodes of a given tree and e is the weighted edit
distance (typically, e� n) [5] representing the sum of the weights of all operations where
an insert and delete each count 1, an update counts 0 and the weight of a move is equal
to the number of leave nodes which are descendants of the node in question. Given two
similar sized trees of the size n which do not have any nodes in common, worst case time
complexity becomes therefore O(n2).

LaDiff, the authors implementation of FMES, took two versions of a LATEX docu-
ment and generated a third one with annotations on additions and deletions as well as
indications where parts of text were moved to another location. An example is given
in [4].

3.4.3. BULD (2001)

Unlike FMES, the BULD algorithm by Cobéna, Abiteboul and Marian is designed ex-
clusively for XML documents [8]. Operations are similar to FMES however insert and
delete target subtrees and not leaf nodes.

In some XML structures it is common that certain tags occur more frequent and
in consecutive sequences — for example think of paragraphs (P-Tag) in an XHTML
document. Therefore XML tag names are not the best choice as a mapping criterion.
Instead a hash on node values and subtrees is calculated which is used in order to find
corresponding nodes and subtrees in the other document. When a DTD is available,
BULD will also consider ID attributes.

12

3. The tree to tree correction problem

The BULD algorithm runs in O(n log n) time and O(n) space where n is the number
of nodes of both documents.

3.4.4. faxma (2006)

A rather unique approach on finding differences in XML documents was presented by
Lindholm, Kangasharju and Tarkoma in 2006 [14]. Instead of matching the tree structure
of documents, the sequence of tokens emitted by the XML parser is compared using a
“rolling hash”. A similar method is used in the rsync tool. After working out the
common parts in the token streams, the results are mapped back to the XML tree
structure (the metadiff).

Runtime is expected to be linear for two document versions with small and local
changes. However for two completely different documents of the same size n, the algo-
rithm runs in O(n2).

3.4.5. XCC (2010)

Recently Rönnau and Berghoff released a framework consisting of libraries and tools
for diffing, patching and merging XML office documents [20]. The diff algorithm shares
some aspects of BULD. The operations insert and delete are extended to address tree-
sequences. The move operation is realized by simply referencing equivalent insert and
delete operations. Like in BULD hash-values are calculated for all nodes in a bottom up
manner.

The algorithm starts by calculating the longest common subsequence (LCS) over the
leaf nodes of both documents. Interestingly an implementation based on Myers [18] is
used in this step. After that the ancestor chain of each node in the LCS is examined for
structure preserving updates, i.e. changes in attributes of internal nodes. Visited nodes
are marked in order to prevent that a certain path is traced more than once. After that
for each unmatched leaf in the first and the second tree where the parent is matched,
the neighborhood is examined in order to detect updates on leaf nodes. Starting on the
remaining leaf nodes inserted and deleted trees are detected and added to the delta now.
Finally corresponding insert and delete operations are identified and referenced.

Worst case complexity is O((L(T1)+L(T2))D+I(T1)+I(T2)+D) in time and O(|T1|+
|T2|) in space where |T1| + |T2| is the sum of the number of nodes in both documents,
L(Tn) the number of leaves, I(Tn) the number of internal nodes and D the minimal edit
distance. Note that the first expression is due to the use of Myers O(ND) difference
algorithm for finding the longest common sequence among the leaves of both trees.
Considering two completely flat trees with only one internal node each (the root node),
where the value of no two leaves are equal, worst case time complexity becomes O(n2)
for two trees of the size n because of parameter D > n. Complexity in space remains
linear though.

The authors claim that the final move-detection step does not influence complexity
because a hash-map with linear lookup time is used to match equivalent insert and delete
operations.

13

4. Representing changes in tree structures

3.4.6. A note on the move operation

Recall that no single algorithm for the generic tree to tree correction problem presented
in the former section employed a move operation. In order to understand the problem
let’s imagine an edit script representing the changes between two ordered trees where
all move operations have been deleted. The result is exactly an edit script representing
the changes between two unordered trees. However this problem has been shown to be
NP-complete for the general case [2].

So what made it possible to devise algorithms with less than quadratic complexity and
support for the move operation at the same time? By matching corresponding insert and
delete operations during a post processing phase, minimality of the resulting edit script
is not guaranteed anymore which is unacceptable for the generic case but reasonable in
the domain of document comparison [7].

3.4.7. Recap

We can identify several key ideas in the work done by a number of research groups
in order to adapt the generic tree edit distance problem to the domain of document
comparison:

1. Constrain the cost model of operations (See 3.4.1). Instead of allowing to assign
a cost to each and every single operation within an edit script, the cost model is
constrained to constant units in order to reduce runtime complexity.

2. Heuristically reduce possible candidates in the matching phase.

3. Accept non-minimal edit scripts in order to further reduce complexity.

4. Adapt scope of operations to enhance readability (i.e. use one insertTree instead of
many insert node operations). Also introduce new operations like move to reduce
size of edit script and to better reflect the meaning of changes. Note that this
modification does not have any effect on runtime complexity.

4. Representing changes in tree structures

4.1. Visualization of changes

In the case when one is more interested into a visualization of changes between two ver-
sions of a document, the information contained in a simple edit script or a patch might
not be expressive enough. GNU diff provides the option to generate a full context patch.
Modified regions, so called hunks, are interleaved in the appropriate locations and de-
noted in the usual manner (see Listing 6 on page 4 for an example of the syntax). More
elaborate representations adapted to a given domain are possible. Often a side by side
view of two document versions with changes highlighted helps us to better understand

14

4. Representing changes in tree structures

Figure 4: Left screenshot: Visualization of the changes by displaying two versions of a
document side by side. Modified lines are highlighted with red color, inserted
lines with blue color.
Right screenshot: The same changes in a raw patch format displayed in an
editor with syntax highlighting.

which regions were modified (see Figure 4 for an example). Alternatively some pro-
grams are able to visualize changes between two versions of a document by annotating
modifications, insertions and deletions directly in one of the document versions.

In the domain of visualizing changes in hierarchical structured information we find
several different approaches.

4.1.1. Delta tree

Recalling the LaDiff software mentioned during the discussion of the FMES algorithm
(3.4.2). This program takes two versions of a LATEX-document and outputs a third one
with annotations where paragraphs were inserted, deleted and moved around. Clearly
this output format does not qualify as a patch as we defined it before, because it does
not express the changes in a machine readable way. However a human reader easily can
understand the output. Chawathe introduced the notion of a delta tree [4] where edit
script operations are injected at the appropriate locations into the source document tree.

4.1.2. DeltaXML v2 and XMLR

The DeltaXML v2 format [9] used by the proprietary DeltaXML tools as well as the
XMLR (“XML-with-references”) format developed by the faxma team [14] both imple-
ment a variant of delta tree tailored to XML. Unchanged subtrees can be marked with
a special attribute in order to shorten the delta file.

15

4. Representing changes in tree structures

Listing 10: DeltaXML: Example of DeltaV2 full context patch [9]

1 <root xmlns:dxx="http :// www.deltaxml.com/ns/xml -namespaced -attribute"

xmlns:dxa="http ://www.deltaxml.com/ns/non -namespaced -attribute"

xmlns:deltaxml="http ://www.deltaxml.com/ns/well -formed -delta -v1"

deltaxml:content -type="changes -only" deltaxml:deltaV2="A!=B"

deltaxml:version="2.0">

2 <a deltaxml:deltaV2="A=B">

3 <b deltaxml:deltaV2="A!=B">

4 <b1 deltaxml:deltaV2="B"/>

5

6 <c deltaxml:deltaV2="A!=B">

7 <deltaxml:attributes deltaxml:deltaV2="B">

8 <dxa:attr deltaxml:deltaV2="B">

9 <deltaxml:attributeValue deltaxml:deltaV2="B">hello world </

deltaxml:attributeValue >

10 </dxa:attr >

11 </deltaxml:attributes >

12 <deltaxml:textGroup deltaxml:deltaV2="A">

13 <deltaxml:text deltaxml:deltaV2="A">hello world </ deltaxml:text >

14 </deltaxml:textGroup >

15 </c>

16 <d deltaxml:deltaV2="A"/>

17 <f deltaxml:deltaV2="A"/>

18 <e deltaxml:deltaV2="A!=B">Word by Word

19 <deltaxml:textGroup deltaxml:deltaV2="A!=B">

20 <deltaxml:text deltaxml:deltaV2="A">changes </ deltaxml:text >

21 <deltaxml:text deltaxml:deltaV2="B">modifications </ deltaxml:text >

22 </deltaxml:textGroup >

23 </e>

24 </root >

Line 2: Subtree below the <a>-Element is identical in both documents.

Line 3-5: Subtree below the element has changes: <b1> is only present in second document.

Line 6-15: In the second document the text node “hello world” is removed instead an attribute attr=‘‘hello
world’’ is added to the Element <c>.

Line 16-17: Both <d/> and <f/> are only present in the first document and are removed in the second.

Line 18: The <e>-Element contains a text where a word was substituted.

DeltaXML provides a set of XSLT filters transforming full context patches into HTML
documents marking up the changes visually.

Note that the enhanced readability and the possibility to easily post-process and
transform delta tree based formats stems from the fact that the entry point of operations
can be derived from its location in the document tree. This property sets delta tree based
formats apart from edit script and patch formats discussed in the following section. Also
note that changes within a text node can be easily denoted using the <deltaxml:text>

element. Expressing changes within a text node is more difficult in edit script / patch
formats.

16

4. Representing changes in tree structures

4.2. Edit script and patch formats

Recalling our definition of edit scripts and patches (1, 2 on page 2) and also our first
attempt to formulate the requirements needed in order to expand them to the domain
of rooted, ordered, labeled trees(3.1.2 on page 7). In the XML domain the obvious way
to address arbitrary nodes in an XML tree is by XPath expressions [6]. Therefore in
most if not all patch formats XPath or a subset thereof is used as anchor for operations.
Expressing context is however not that easy like it is in the case of flat files. In the
following section we discuss two different XML based file formats for representing changes
between XML trees.

4.2.1. RFC 5261 - XML Patch Operations Framework

RFC 5261 describes an “XML Patch Operations Framework Utilizing XPath Selec-
tors” [23] which was developed by Urpalainen for the IETF SIMPLE working group2. A
reference implementation of a command line tool capable of applying xml-patch-ops files
is available from the xmlpatch project website3. Note that RFC 5261 does not define a
complete XML patch file format but rather a set of well defined operations which may be
combined with additional XML elements in order to create specialized implementations.
A few examples of existing patch formats are given in RFC 5261. Listing 11 depicts an
example in the PIDF diff format defined in RFC 5262 [15].

The xml-patch-ops framework consists of three operations: add, replace, remove. All
of them take an XPath expression as an anchor in their sel-Attribute. The operations
may target any type of XML node, namely elements, attributes, namespace prefix dec-
larations, comments, processing instructions and text nodes. Some restrictions apply,
especially the root node and comments as well as processing instructions of the root node
cannot be patched. Also entities are out of the scope of the xml-patch-ops framework.

In order to support insertion of attributes and namespace prefix declarations, the
<add> element provides a special type-attribute. Using the pos-attribute one can specify
whether a new element should be inserted as a sibling before or after the element
specified using sel. If either prepend or append is specified in pos, the new element is
inserted as the first and the last child element respectively of the target element.

There is also an XML specific extension for the <remove> element, namely the optional
ws attribute. Its value specifies whether a whitespace-only text node before or after

the target element also should be deleted during the removal. Note that in XML no
two text-nodes can be siblings. Therefore the patching algorithm must account for that
case and merge text nodes which became siblings due to a remove-operation in between
them.

Listing 11: Example of RFC 5261 based delta format: PIDF diff [15]

1 <?xml version="1.0" encoding="UTF -8"?>

2SIP for Instant Messaging and Presence Leveraging Extensions (simple):
http://datatracker.ietf.org/wg/simple/

3An XML Patch library:
http://xmlpatch.sourceforge.net/

17

http://datatracker.ietf.org/wg/simple/
http://xmlpatch.sourceforge.net/

4. Representing changes in tree structures

2 <p:pidf -diff

3 xmlns="urn:ietf:params:xml:ns:pidf"

4 xmlns:p="urn:ietf:params:xml:ns:pidf -diff"

5 xmlns:r="urn:ietf:params:xml:ns:pidf:rpid"

6 xmlns:d="urn:ietf:params:xml:ns:pidf:data -model"

7 entity="pres:someone@example.com"

8 version="568">

9
10 <p:add sel="presence/note" pos="before">

11 <tuple id="ert4773">

12 <status >

13 <basic >open </basic >

14 </status >

15 <contact priority="0.4">mailto:pep@example.com </contact >

16 <note xml:lang="en">This is a new tuple inserted

17 between the last tuple and person element </note >

18 </tuple >

19 </p:add >

20
21 <p:replace sel="*/tuple[@id=’r1230d ’]/status/basic/text()">open </p:

replace >

22
23 <p:remove sel="*/d:person/r:activities/r:busy" ws="after"/>

24
25 <p:replace sel="*/tuple[@id=’cg231jcr ’]/contact/@priority" >0.7</p:

replace >

26
27 </p:pidf -diff >

Line 1-9: XML header and root element. Especially line 7 and 8 are noteworthy: The
entity attribute holds the primary key of the object to patch while the version

attribute specifies the revision of the object this patch is applicable to.

Line 10-19: Insert a new XML subtree before the first <note> element in the <presence>
element.

Line 21: Replace the text node in the basic status of the tuple whose id is “r1230d”.

Line 23: Remove the <busy> element including following whitespace only text node.

Line 25: Replace the value of the priority attribute of the <contact> element of the
tuple whose id is “cg231jcr”.

RFC 5261 describes some very important aspects of XML regarding the design of
patch formats, especially the problem of whitespace-only text nodes as well as how to
deal with differing namespace prefixes in target document and patch file.

The use of XPath for target node selection however poses some problems. First,
XPath expressions always evaluate to a node set and never to a single node. Second,
while it would be possible to express some sort of context using XPath axis (ancestor,
descendant, following, preceding), the expression would quickly get complicated if not
unreadable.

18

4. Representing changes in tree structures

Because the add and remove operations are not invertible and also because all instruc-
tions of a patch must be executed in the given order, xml-patch-ops does not qualify as
a patch but rather as an edit script format. Also the lack of a support for specifying the
context of an operation points into that direction.

A very similar approach was proposed by Moaut as an IETF internet draft [17], which
however expired without having been discussed thoroughly. His DUL (Delta Update
Language) additionally allows operations in substrings of text nodes, which allows finer
grained change representation in documents containing big chunks of continuous text.
Additionally a move operation is supported. The authors implementation of a XML diff
tool is based on Chawathes xmdiff and FMES algorithms (see 3.4.2, 3.3.1). An XML
patch tool is also part of the open source software package4.

Relying on XPath expressions for node identification, Mouats DUL shares the same
characteristics and constraints as the xml-patch-ops framework. The main difference
between the two formats is that the DUL targets document oriented XML files while
xml-patch-ops is better suited for data oriented XML.

4.2.2. XCC patch format

The delta model presented in [21] suits our definition of a patch including context
based identification and verification of anchors when applying operations, invertibil-
ity of patches as well as commutativity of patch operations. In order to keep space
requirements for context information low, fingerprints are calculated and stored for the
nodes within a given radius in the neighborhood of the patch operations.

In order to support patching of documents which slightly differ from the original
source, candidate anchors are identified based on a weighted match quality function.
Weights of node-fingerprints in the neighborhood decrease with increasing distance to
the anchor. This technique is similar to the simple fuzzy matching mechanism in GNU
diffutils, where the context radius is reduced until a match can be found in the target
document.

Listing 12: Rönnau and Berghoff: Delta format example [19]

1 <?xml version="1.0" encoding="utf -8"?> <delta >

2 <update digester="fnv" path="/3/0/1" radius="4" shortened="true">

3 <fingerprint >

4 41 AADF68 ;9 A960EB2;EAA88AD9 ;09 E5C47C;A5B43DB0 ;4 EAACE7B;FC96EE47;

FC96EE47;FC96EE47

5 </fingerprint >

6 <oldvalue >

7 <text:p text:style -name="Standard" />

8 </oldvalue >

9 <newvalue >

10 <text:p text:style -name="P1" />

11 </newvalue >

12 </update >

4diffxml & patchxml: Tools for comparing and patching XML files:
http://diffxml.sourceforge.net/

19

http://diffxml.sourceforge.net/

4. Representing changes in tree structures

13 <update digester="fnv" path="/3/0/1/0" radius="4" shortened="true">

14 <fingerprint >

15 9A960EB2;EAA88AD9 ;09 E5C47C;A5B43DB0 ;4 EAACE7B;FC96EE47;FC96EE47;

FC96EE47;FC96EE47

16 </fingerprint >

17 <oldvalue >Hello , world!</oldvalue >

18 <newvalue >Hello , World!</newvalue >

19 </update >

20 <insert digester="fnv" path="/2/0" radius="4" shortened="true">

21 <fingerprint >

22 8F792681 ;5 DBFCE63;B63D542B;F7128BEA ;4 B12A6AF;B4563E0E ;8 B673BCB;

A5FB1C64 ;41 AADF68

23 </fingerprint >

24 <oldvalue />

25 <newvalue >

26 <style:style style:family="paragraph" style:name="P1">

27 <style:text -properties fo:font -weight="bold"/>

28 </style:style >

29 </newvalue >

30 </insert >

31 </delta >

Line 2: Start of an update-Operation. The digester-Attribute specifies that the FNV-
hash method should be used to calculate the fingerprints. The path-Attribute
indicates the path to the XML element which should be updated second child of
first child of fourth child of the root node).

Line 3-5: Fingerprints from neighbor nodes within the radius of four (indicated by the
corresponding Attribute in Line 2). Note that the path-Attribute and the finger-
print together form the anchor of the operation.

Line 6-11: Old and new value of the element. Note that in this case only the text:style
Attribute is modified and that the element name as well as its children is not
touched. Also note that this syntax suggests that the text:p element is empty
(does not have any child nodes) which is not true, as we see in the following
operation.

Line 13-19: Update the text node of the element whose attribute was altered in the last
operation.

Line 20-30: Insert a new XML Element tree as the first child of the 2nd child of the
root node.

In terms of expressivity as well as functionality the XCC patch format comes very
close to the unified patch format of GNU diff. In fact it is the only somewhat universal
format for a wide range of XML files today providing invertibility and commutativity as
well as the possibility to merge changes into a document which differs from the original
document a patch was generated from in the first place. However there might be still
room for improvements. We’ll discuss that in the next section.

20

5. Conclusion and Future Work

5. Conclusion and Future Work

5.1. Results

5.1.1. Research on diff algorithms

Computation of tree edit distance and related problems were explored extensively by a
number of different researchers. However the generic tree diff algorithm first developed
by Tai and subsequently enhanced by Zhang and Shasha, Klein and finally Demaine et
al. still is not suitable for the domain of document comparison because best worst case
time and space complexity remained cubic and quadratic respectively.

A number of domain specific optimizations for hierarchically structured data were first
proposed by Chawathe et al. Later Cobéna et al., Lindholm et al. and recently Rönnau
and Berghoff applied similar techniques to devise linear time and space algorithms for
the difference analysis of XML documents. Better speed and less memory requirements
come at the expense of the loss of minimality of the generated edit script which, however,
is negligible in the domain of document comparison.

The BULD and XCC algorithms are suited best for DOM based comparison while
faxma looks promising regarding stream based implementations.

5.1.2. Research on patch formats and merging strategies

Finding the differences between two document versions is only part of the story. After
building up an appropriate edit script or delta tree the result must be presented to the
user or serialized into a patch file. Other than in the case of flat files where the unified
diff format can be regarded as a quasi standard, there does not seem to be any broad
agreement on patch file format in the domain of XML documents.

Having reached the state of a proposed standard, the xml-diff-ops framework described
in RFC 5261 may gain more acceptance in the future. Though it cannot stand on
its own because it only defines the operations along with their parameters and some
implementation details. The framework is intended as a base for application specific
formats.

Existing patch formats can be roughly divided into two groups. In delta tree oriented
flavours, annotations or edit script operations are embedded into the source document
at the appropriate locations. Such formats typically are easy to transform in a way
suitable for presentation with highlighted changes. This patch format can be regarded
as full context patch, however normally there is a way to reduce patch sizes by leaving
out unchanged subtrees. The other group consists of patch formats which are derived
more or less directly from the edit script produced by the diff algorithm. Main problem
here is how to specify the target node of operations in a robust way. Mostly XPath
expressions or a subset thereof is used but without additional measures a patch created
in such a way cannot safely be applied in the case when it is not clear if the target
document corresponds exactly to the source document the patch was computed for.

Merging methods are closely coupled to the capabilities of a patch format. Only the
XCC patch tool is currently capable of safely merging changes to documents which were

21

5. Conclusion and Future Work

altered between diffing and patching. There is even a GUI tool which allows interactive
merging of XML documents.

5.2. Future Work

5.2.1. Dynamic diff granularity

When working with text documents it might be interesting if the diff algorithm would
be capable of picking up finer grained changes than insertion, deletion and modification
of whole paragraphs. Generally comparing every text node on a word by word basis
however does not make sense either, especially when comparing database style XML
documents containing record-like element structures. It might be interesting to extend
one of the diff algorithms with the ability to adapt diff granularity according to domain
specific rules. Other things like whitespace normalization could be controlled with the
same mechanics probably resulting in more expressive results than it would be possible
without domain knowledge. It might be possible that some or all of the necessary
information is expressible in one of XML Schema languages or the DTD.

5.2.2. Merge capable delta tree style patch format

We have given some reason why delta tree based formats are easier to postprocess in
order to display the changes to a user in a visual and informative manner. We now might
try to devise a patch format which combines the benefits of the delta tree model with
the robustness of the XCC patch format. The DeltaV2 format might serve as a starting
point.

Alternatively we might devise some methods capable of generating a delta tree style
annotated document from a patch and the corresponding source document. While the
patch remains in a universal format (e.g. XCC), the annotation-engine might apply
document-type specific rules in order to highlight changes in a meaningful way. A
visualization of differences found in two versions of an XHTML document might be
realized with the application of custom CSS styles to the changed elements, while in an
SVG image some colored overlays might be better suited to indicate modifications.

5.2.3. Diffing graphs along a spanning tree

It might be interesting to expand one of the analyzed algorithms to the domain of graphs
in general, and the RDF (Resource Description Framework) in particular. Instead of
trying to diff two graphs directly possibly having to worry about cycles, we could try
to first compute a spanning tree for each graph and then apply the algorithm on the
spanning trees. Analogous to the mapping constraints applied in Chawathes FMES
algorithm, constraining the arcs which may participate in a spanning tree might speedup
its computation.

A document by Tim Berners-Lee and Dan Conolly already points out some problems

22

5. Conclusion and Future Work

and possible solutions as well as a patch format5. Swish6, a set of RDF tools written in
Haskell by Graham Klyne, provides means to show differences between RDF graphs.

5Delta: an ontology for the distribution of differences between RDF graphs
http://www.w3.org/DesignIssues/Diff

6Swish Semantic Web Inference Scripting in Haskell
http://www.ninebynine.org/RDFNotes/Swish/Intro.html

23

http://www.w3.org/DesignIssues/Diff
http://www.ninebynine.org/RDFNotes/Swish/Intro.html

A. Reflection

A. Reflection

We successfully identified some important algorithms in the chosen domain. Also we
characterized each and depicted the relationships and differences among them. We also
showed that there is no universal solution regarding patch formats for XML documents
at the moment. We identified two flavours of patch formats and analyzed their benefits
and drawbacks and also gave some ideas on how to develop them further.

Despite the effort to explain the most important points as precise as possible, some
concepts are not defined well enough in this document. Especially the individual op-
eration sets which differ quite substantially between the analyzed algorithms, deserve
some more attention. Overall this document might profit from some more figures and
examples which might help clear up some details.

The amount of research about previous work required to gain enough knowledge on the
subject was unexpected high. In order to understand the performance characteristics of
modern XML diff implementations it was especially important to identify the differences
between them and the generic exact diff algorithms. This somewhat extensive research
was necessary in order to build up the foundation required to base or future work on.

B. Project Management

B.1. Methodology

While not sticking strictly to an agile methodology/framework like Scrum or XP the
core principles of agile project management are taken into account while developing this
project. Risk and exploration factor are high and therefore change of coverage and even
objectives should not be precluded until late in the project.

Meetings with the supervisor are held frequently on a mostly weekly or basis where
current and future work is discussed.

B.2. Project Livecycle

Agile methodologies are frequently divided into four to five phases (“Envision”, “Specu-
late”, “Explore”, “Adapt”, “Close”) [12]. Applied to the livecycle of this project thesis
the first phase comprises the project proposal (before the start of the semester), the
second the first couple of weeks where identifying and resolving the difficult problems is
important, the third phase mostly consists of writing activity while the last one is used
to close up the project.

B.3. Tools

No specialized tools are used in order to schedule and prioritize tasks. Reading notes,
progress reports, meeting minutes and also tasks which either are marked with [open]
and [done] are recorded in a simple textfile (journal.txt). Using a text editor which is
able to highlight lines matching a given pattern (like vim), it is very easy to keep the
overview of open tasks.

24

B. Project Management

B.4. Chart
2
01

1

8
9

10
1
1

1
2

13
14

1
5

1
6

17
18

1
9

2
0

21
22

2
3

2
4

1
2

3
4

5
6

7
8

va
c

9
10

1
1

1
2

13
14

1
5

1
6

In
it

ia
li

z
a
ti

o
n

P
ro

je
ct

se
tu

p

R
ou

gh
co

n
ce

p
t

R
ea

d
D

iff
M

an
u

al

M
it

ig
a
te

R
is

k

R
ea

d
D

iff
O

n
th

ol
og

y

R
ea

d
R

F
C

5
26

1

R
ea

d
ab

ou
t

O
W

L
P

ro
p

er
ti

es

R
ea

d
M

il
le

r/
M

ye
rs

A
lg

o
ri

th
m

W
ri

te
In

tr
o
d

u
ct

io
n

W
ri

te
F

u
n

d
am

en
ta

ls

C
re

a
te

V
a
lu

e

L
in

ea
r

v
s.

st
ru

ct
u

re
d

d
at

a

R
D

F
D

iff

D
el

ta
V

2
/

R
F

C
5
2
61

G
en

er
al

iz
e

B
u

ff
e
r

F
in

a
li

z
a
ti

o
n

25

List of Figures

C. List of Figures

1. Tree edit operations. “Insert”, “delete” and “relabel” operate on node
level while “insert tree” and “delete tree” extend to whole subtrees 8

2. Zhang Sasha: postorder tree traversal (red line) and keyroots (green
shaded nodes). 9

3. Worst case input tree for Zhang Sasha algorithm 10
4. Left screenshot: Visualization of the changes by displaying two versions

of a document side by side. Modified lines are highlighted with red color,
inserted lines with blue color.
Right screenshot: The same changes in a raw patch format displayed in
an editor with syntax highlighting. 15

D. Listings

1. Original Document . 3
2. Modified Document . 3
3. Resulting Edit Script . 3
4. Slightly modified original . 3
5. Corrupt document . 3
6. Resulting Edit Script . 4
7. Original XML Document . 6
8. Modified Version . 6
9. Patch produced by GNU diff . 6
10. DeltaXML: Example of DeltaV2 full context patch [9] 15
11. Example of RFC 5261 based delta format: PIDF diff [15] 17
12. Rönnau and Berghoff: Delta format example [19] 19

E. References

[1] David T. Barnard, Gwen Clarke, and Nicholas Duncan. Tree-to-tree correction for
document trees technical report 95-372. Technical report, January 1995. Available
from: http://ftp.qucis.queensu.ca/TechReports/Reports/1995-372.pdf. 11

[2] Philip Bille. A survey on tree edit distance and related problems. Theoretical
computer science, 337(1-3):217–239, 2005. doi:10.1016/j.tcs.2004.12.030. 6,
14

[3] Sudarshan S. Chawathe. Comparing hierarchical data in external memory. In
Proceedings of 25th International Conference on Very Large Data Bases, page
90–101, September 1999. Available from: http://www.cs.umaine.edu/~chaw/

pubs/xdiff.pdf. 11

26

http://ftp.qucis.queensu.ca/TechReports/Reports/1995-372.pdf
http://dx.doi.org/10.1016/j.tcs.2004.12.030
http://www.cs.umaine.edu/~chaw/pubs/xdiff.pdf
http://www.cs.umaine.edu/~chaw/pubs/xdiff.pdf

E. References

[4] Sudarshan S. Chawathe. Managing change in heterogeneous autonomous databases.
PhD thesis, Stanford University, 1999. Available from: http://www.cs.umaine.

edu/~chaw/pubs/cm.pdf. 12, 15

[5] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. Change detection in hierarchically structured information. In Pro-
ceedings of the 1996 ACM SIGMOD international conference on Management of
data - SIGMOD ’96, pages 493–504, Montreal, Quebec, Canada, 1996. doi:

10.1145/233269.233366. 11, 12

[6] James Clark and Steve DeRose. XML path language (XPath), November 1999.
Available from: http://www.w3.org/TR/1999/REC-xpath-19991116/. 17

[7] Grégory Cobéna, Talel Abdessalem, and Yassine Hinnach. A comparative study
for XML change detection. Research Report, INRIA Rocquencourt, France,
2002. Available from: ftp://tfalati.inria.fr/INRIA/Projects/gemo/gemo/

GemoReport-221.pdf. 14

[8] Grégory Cobéna, Serge Abiteboul, and Amélie Marian. Detecting changes in XML
documents. In Proceedings of the International Conference on Data Engineering -
ICDE 2002, pages 41–52, February 2002. doi:10.1109/ICDE.2002.994696. 12

[9] DeltaXML. Two and three document DeltaV2 format, March 2011. Available
from: http://deltaxml.com/library/deltav2-format-specification.html. 1,
15, 16, 26

[10] Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. An optimal
decomposition algorithm for tree edit distance. ACM Transactions on Algorithms,
6(1):1–19, December 2009. doi:10.1145/1644015.1644017. 10

[11] Serge Dulucq and Hélène Touzet. Analysis of tree edit distance algorithms. In
Combinatorial Pattern Matching, volume 2676, page 83–95, 2003. doi:10.1007/

3-540-44888-8_7. 10

[12] James Highsmith. Agile project management : creating innovative products.
Addison-Wesley, Upper Saddle River NJ, 2nd ed. edition, 2010. 24

[13] Philip N. Klein. Computing the edit-distance between unrooted ordered trees. Al-
gorithms - ESA’98, page 1–1, 1998. doi:10.1007/3-540-68530-8_8. 10

[14] Tancred Lindholm, Jaakko Kangasharju, and Sasu Tarkoma. Fast and simple XML
tree differencing by sequence alignment. In Proceedings of the 2006 ACM symposium
on Document engineering, page 75–84, 2006. doi:10.1145/1166160.1166183. 13,
15

[15] Mikka Lonnfors, Eva Leppanen, Hirsham Khartabil, and Jari Urpalainen. RFC
5262: Presence information data format (PIDF) extension for partial presence,
September 2008. Available from: http://tools.ietf.org/html/rfc5262. 17, 26

27

http://www.cs.umaine.edu/~chaw/pubs/cm.pdf
http://www.cs.umaine.edu/~chaw/pubs/cm.pdf
http://dx.doi.org/10.1145/233269.233366
http://dx.doi.org/10.1145/233269.233366
http://www.w3.org/TR/1999/REC-xpath-19991116/
ftp://tfalati.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-221.pdf
ftp://tfalati.inria.fr/INRIA/Projects/gemo/gemo/GemoReport-221.pdf
http://dx.doi.org/10.1109/ICDE.2002.994696
http://deltaxml.com/library/deltav2-format-specification.html
http://dx.doi.org/10.1145/1644015.1644017
http://dx.doi.org/10.1007/3-540-44888-8_7
http://dx.doi.org/10.1007/3-540-44888-8_7
http://dx.doi.org/10.1007/3-540-68530-8_8
http://dx.doi.org/10.1145/1166160.1166183
http://tools.ietf.org/html/rfc5262

E. References

[16] Webb Miller and Eugene W. Myers. A file comparison program. Software:
Practice and Experience, 15(11):1025–1040, November 1985. doi:10.1002/spe.

4380151102. 1

[17] Adrian Mouat. draft-mouat-xml-patch-00 - a delta format for XML
documents, 2005. Available from: http://tools.ietf.org/html/

draft-mouat-xml-patch-00. 1, 19

[18] Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1(1-4):251–266, November 1986. doi:10.1007/BF01840446. 2, 11, 13

[19] Sebastian Rönnau and Uwe M. Borghoff. Versioning XML-based office documents.
Multimedia Tools and Applications, 43(3):253–274, March 2009. doi:10.1007/

s11042-009-0271-2. 19, 26

[20] Sebastian Rönnau and Uwe M. Borghoff. XCC: change control of XML documents.
Computer Science - Research and Development, November 2010. doi:10.1007/

s00450-010-0140-2. 13

[21] Sebastian Rönnau, Christian Pauli, and Uwe M. Borghoff. Merging changes in XML
documents using reliable context fingerprints. In Proceeding of the eighth ACM
symposium on Document engineering, page 52–61, 2008. doi:10.1145/1410140.

1410151. 1, 19

[22] Kuo-Chung Tai. The Tree-to-Tree correction problem. Journal of the ACM
(JACM), 26:422–433, July 1979. ACM ID: 322143. doi:10.1145/322139.322143.
7

[23] Jari Urpalainen. RFC 5261: An extensible markup language (XML) patch opera-
tions framework utilizing XML path language (XPath) selectors, September 2008.
Available from: http://tools.ietf.org/html/rfc5261. 1, 17

[24] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance
between trees and related problems. SIAM Journal on Computing, 18(6):1245–1262,
December 1989. doi:10.1137/0218082. 9

28

http://dx.doi.org/10.1002/spe.4380151102
http://dx.doi.org/10.1002/spe.4380151102
http://tools.ietf.org/html/draft-mouat-xml-patch-00
http://tools.ietf.org/html/draft-mouat-xml-patch-00
http://dx.doi.org/10.1007/BF01840446
http://dx.doi.org/10.1007/s11042-009-0271-2
http://dx.doi.org/10.1007/s11042-009-0271-2
http://dx.doi.org/10.1007/s00450-010-0140-2
http://dx.doi.org/10.1007/s00450-010-0140-2
http://dx.doi.org/10.1145/1410140.1410151
http://dx.doi.org/10.1145/1410140.1410151
http://dx.doi.org/10.1145/322139.322143
http://tools.ietf.org/html/rfc5261
http://dx.doi.org/10.1137/0218082

	Introduction
	Motivation and Goals

	Comparing and merging flat text files
	Fundamentals
	Simple model for string sequences
	Conforming edit script
	Longest common subsequence vs. shortest edit script

	GNU Diffutils
	Edit scripts
	Patch format
	Invertibility
	Commutativity
	Recap

	The tree to tree correction problem
	Towards diffing structured data
	Tree model
	Requirements for patch format
	Tree operations

	The generic tree to tree correction problem
	Tai (1979)
	Zhang and Shasha (1989)
	Klein (1998)
	DMRW (2009)
	Recap

	Unit cost algorithms
	mmdiff and xmdiff (1999)

	Diff algorithms for structured hierarchical data
	Extended Zhang Sasha (1995)
	FastMatch EditScript - FMES (1996)
	BULD (2001)
	faxma (2006)
	XCC (2010)
	A note on the move operation
	Recap

	Representing changes in tree structures
	Visualization of changes
	Delta tree
	DeltaXML v2 and XMLR

	Edit script and patch formats
	RFC 5261 - XML Patch Operations Framework
	XCC patch format

	Conclusion and Future Work
	Results
	Research on diff algorithms
	Research on patch formats and merging strategies

	Future Work
	Dynamic diff granularity
	Merge capable delta tree style patch format
	Diffing graphs along a spanning tree

	Reflection
	Project Management
	Methodology
	Project Livecycle
	Tools
	Chart

	List of Figures
	Listings
	References

